Endostar, a recently introduced recombinant human endostatin, inhibits proliferation and migration through regulating growth factors, adhesion factors and inflammatory mediators in choroid-retinal endothelial cells

2010 ◽  
Vol 44 (4) ◽  
pp. 585-590 ◽  
Author(s):  
Wen Xu ◽  
Panpan Ye ◽  
Zhaochun Li ◽  
Junting Shi ◽  
Wei Wang ◽  
...  
2021 ◽  
Author(s):  
Weiguang Yang ◽  
Manxia Su ◽  
Yanli Yu ◽  
Qingxin Fang ◽  
Yusheng Ma ◽  
...  

Background: MicroRNAs (miRNAs) play an important role in the proliferation and migration of retinal endothelial cells in patients with hypertension and hypertensive retinopathy (HR). This study aimed to investigate the clinical value of miR-637 in HR and its role in retinal endothelial cell proliferation and migration. Methods: A total of 126 subjects were recruited for the study, including 42 patients with hypertension (male/female 25/17), 42 healthy individuals (male/female 20/22), and 42 cases with HR (male/female 20/22). Except SBP and DBP, there was no significant difference in other indexes among the three groups. qRT-PCR was used to detect the expression of miR-637. The receiver operating curve (ROC) was used for diagnosis value analysis. Logistic regression analysis was used to evaluate the relationship between miR-637 and HR. CCK-8 and Transwell were used to detect the effect of miR-637 on the proliferation and migration of HUVECs. Results: Compared with hypertensive patients, HR patients had the lowest expression of miR-637. The area under the curve (AUC) of miR-637 detected by the ROC curve method is 0.892, which has the ability to distinguish hypertension and HR patients. Logistic regression analysis showed that miR-637 was an independent influence factor in HR. Cell experiment results showed that overexpression of miR-637 significantly inhibited cell proliferation and migration, while downregulation of miR-637 had the opposite effect. Luciferase analysis showed that STAT3 was the target gene of miR-637. Conclusion: Our data indicate that miR-637 is a potential non-invasive marker for patients with HR. The action of miR-637 on STAT3 may inhibit the proliferation and migration of retinal endothelial cells, providing a possible target for the treatment of HR.


2009 ◽  
Vol 73 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Kalimuthu Kalishwaralal ◽  
Elayappan Banumathi ◽  
SureshBabu Ram Kumar Pandian ◽  
Venkataraman Deepak ◽  
Jeyaraj Muniyandi ◽  
...  

2019 ◽  
Vol 17 (4) ◽  
pp. 379-387 ◽  
Author(s):  
Yan Sun ◽  
Xiao-li Liu ◽  
Dai Zhang ◽  
Fang Liu ◽  
Yu-jing Cheng ◽  
...  

Background:Intraplaque angiogenesis, the process of generating new blood vessels mediated by endothelial cells, contributes to plaque growth, intraplaque hemorrhage, and thromboembolic events. Platelet-derived Exosomes (PLT-EXOs) affect angiogenesis in multiple ways. The ability of miR-126, one of the best-characterized miRNAs that regulates angiogenesis, carried by PLT-EXOs to influence angiogenesis via the regulation of the proliferation and migration of endothelial cells is unknown. In this study, we aimed to investigate the effects of PLT-EXOs on angiogenesis by Human Umbilical Vein Endothelial Cells (HUVECs).Methods:We evaluated the levels of miR-126 and angiogenic factors in PLT-EXOs from Acute Coronary Syndrome (ACS) patients and healthy donors by real-time Polymerase Chain Reaction (PCR) and western blotting. We incubated HUVECs with PLT-EXOs and measured cell proliferation and migration with the Cell Counting Kit-8 assay and scratch assay, respectively. We also investigated the expression of miR-126 and angiogenic factors in HUVECs after exposure to PLT-EXOs by western blotting and real-time PCR.Results:PLT-EXOs from ACS patients contained higher levels of miR-126 and angiogenic factors, including Vascular Endothelial Growth Factor (VEGF), basic Fibroblast Growth Factor (bFGF), and Transforming Growth Factor Beta 1 (TGF-β1), than those from healthy donors (p<0.05). Moreover, the levels of exosomal miR-126 and angiogenic factors were increased after stimulation with thrombin (p<0.01). HUVEC proliferation and migration were promoted by treatment with activated PLT-EXOs (p<0.01); they were accompanied by the over-expression of miR-126 and angiogenic factors, including VEGF, bFGF, and TGF-β1 (p<0.01).Conclusion:Activated PLT-EXOs promoted the proliferation and migration of HUVECs, and the overexpression of miR-126 and angiogenic factors, thereby elucidating potential new therapeutic targets for intraplaque angiogenesis.


2021 ◽  
pp. 153537022110281
Author(s):  
Yu Hou ◽  
Yu-Xi He ◽  
Jia-Hao Zhang ◽  
Shu-Rong Wang ◽  
Yan Zhang

Epithelial tissue has important functions such as protection, secretion, and sensation. Epithelial damage is involved in various pathological processes. Bone morphogenetic proteins (BMPs) are a class of growth factors with multiple functions. They play important roles in epithelial cells, including in differentiation, proliferation, and migration during the repair of the epithelium. This article reviews the functions and mechanisms of the most profoundly studied BMPs in the process of epithelial damage repair and their clinical significance.


2021 ◽  
Author(s):  
Koichi Nishino ◽  
Yasuhiro Yoshimatsu ◽  
Tomoki Muramatsu ◽  
Yasuhito Sekimoto ◽  
Keiko Mitani ◽  
...  

Abstract Lymphangioleiomyomatosis (LAM) is a rare pulmonary disease characterised by the proliferation of smooth muscle-like cells (LAM cells), and an abundance of lymphatic vessels in LAM lesions. Studies reported that vascular endothelial growth factor-D (VEGF-D) secreted by LAM cells contributes to LAM-associated lymphangiogenesis, however, the precise mechanisms of lymphangiogenesis and characteristics of lymphatic endothelial cells (LECs) in LAM lesions have not yet been elucidated. In this study, human primary-cultured LECs were obtained both from LAM-affected lung tissues (LAM-LECs) and normal lung tissues (control LECs) using fluorescence-activated cell sorting (FACS). We found that LAM-LECs had significantly higher ability of proliferation and migration compared to control LECs. VEGF-D significantly promoted migration of LECs but not proliferation of LECs in vitro. cDNA microarray and FACS analysis revealed the expression of vascular endothelial growth factor receptor (VEGFR)-3 and integrin α9 were elevated in LAM-LECs. Inhibition of VEGFR-3 suppressed proliferation and migration of LECs, and blockade of integrin α9 reduced VEGF-D-induced migration of LECs. Our data uncovered the distinct features of LAM-associated LECs, increased proliferation and migration, which may be due to higher expression of VEGFR-3 and integrin α9. Furthermore, we also found VEGF-D/VEGFR-3 and VEGF-D/ integrin α9 signaling play an important role in LAM-associated lymphangiogenesis.


Blood ◽  
2008 ◽  
Vol 111 (8) ◽  
pp. 4145-4154 ◽  
Author(s):  
Nelly A. Abdel-Malak ◽  
Coimbatore B. Srikant ◽  
Arnold S. Kristof ◽  
Sheldon A. Magder ◽  
John A. Di Battista ◽  
...  

Abstract Angiopoietin-1 (Ang-1), ligand for the endothelial cell–specific Tie-2 receptors, promotes migration and proliferation of endothelial cells, however, whether these effects are promoted through the release of a secondary mediator remains unclear. In this study, we assessed whether Ang-1 promotes endothelial cell migration and proliferation through the release of interleukin-8 (IL-8). Ang-1 elicited in human umbilical vein endothelial cells (HUVECs) a dose- and time-dependent increase in IL-8 production as a result of induction of mRNA and enhanced mRNA stability of IL-8 transcripts. IL-8 production is also elevated in HUVECs transduced with retroviruses expressing Ang-1. Neutralization of IL-8 in these cells with a specific antibody significantly attenuated proliferation and migration and induced caspase-3 activation. Exposure to Ang-1 triggered a significant increase in DNA binding of activator protein-1 (AP-1) to a relatively short fragment of IL-8 promoter. Upstream from the AP-1 complex, up-regulation of IL-8 transcription by Ang-1 was mediated through the Erk1/2, SAPK/JNK, and PI-3 kinase pathways, which triggered c-Jun phosphorylation on Ser63 and Ser73. These results suggest that promotion of endothelial migration and proliferation by Ang-1 is mediated, in part, through the production of IL-8, which acts in an autocrine fashion to suppress apoptosis and facilitate cell proliferation and migration.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Luke H Hoeppner ◽  
Resham Bhattacharya ◽  
Ying Wang ◽  
Ramcharan Singh Angom ◽  
Enfeng Wang ◽  
...  

Vascular endothelial growth factor A (VEGF) signals primarily through its cognate receptor VEGFR-2 to control vasculogenesis and angiogenesis. Dysregulation of these physiological processes contributes to the pathologies of heart disease, stroke, and cancer. Protein kinase D (PKD) plays a crucial role in the regulation of angiogenesis by modulating endothelial cell proliferation and migration. In human umbilical vein endothelial cells (HUVEC) and human blood outgrowth endothelial cells (BOEC), knockdown of PKD-1 or PKD-2 downregulates VEGFR-2 and significantly inhibits VEGF-induced endothelial cell proliferation and migration. We sought to determine the molecular mechanism through which PKD modulates VEGFR-2 expression. Based on bioinformatics data, activating enhancer binding protein 2 (AP2) binding sites exist within the VEGFR-2 promoter. Thus, we hypothesized PKD may downregulate VEGFR-2 through AP2-mediated transcriptional repression of the VEGFR-2 promoter. Indeed, AP2β binds the VEGFR-2 promoter upon PKD knockdown in HUVEC as evident by chromatin immunoprecipitation assay. Luciferase reporter assays using serial deletions of AP2β binding sites within the VEGFR-2 promoter revealed transcriptional activity negatively correlated with the number of AP2β binding sites, thus confirming negative regulation of VEGFR-2 transcription by AP2β. Next, using siRNA, we demonstrated that upregulation of AP2β decreased VEGFR-2 expression and loss of AP2β enhanced VEGFR-2 expression. In vivo studies confirmed this finding as we observed increased VEGFR-2 immunostaining in the dorsal horn of the spinal cord of embryonic day 13 AP2β knockout mice. We hypothesize that PKD directly regulates AP2β function by serine phosphorylation and ongoing studies are being conducted to determine phosphorylation sites in AP2β directly regulated by PKD. Taken together, we demonstrate AP2β negatively regulates VEGFR-2 transcription and VEGFR-2 is a major downstream target of PKD. Our findings describing how PKD regulates angiogenesis may contribute to the development of therapies to improve the clinical outcome of patients afflicted by heart disease, stroke, and cancer.


Sign in / Sign up

Export Citation Format

Share Document