Microstructure Evolution Process of 7136 Aluminum Alloy during Aging Treatment

2021 ◽  
Vol 122 (4) ◽  
pp. 383-388
Author(s):  
Ran Wang ◽  
Binghui Ren ◽  
Yunfan Dong ◽  
Jinfeng Leng
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jianing Wang ◽  
Jieshi Chen ◽  
Zhiyuan Zhang ◽  
Peilei Zhang ◽  
Zhishui Yu ◽  
...  

Purpose The purpose of this article is the effect of doping minor Ni on the microstructure evolution of a Sn-xNi (x = 0, 0.05 and 0.1 wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment. Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of interfacial layer was different due to the different mechanism of element diffusion of the two substrates. The PC Ni substrate mainly provided Ni atoms through grain boundary diffusion. The Ni3Sn4 phase of the Sn0.05Ni/PC Ni joint was finer, and the diffusion flux of Sn and Ni elements increased, so the Ni3Sn4 layer of this joint was the thickest. The SC Ni substrate mainly provided Ni atoms through the lattice diffusion. The Sn0.1Ni/SC Ni joint increases the number of Ni atoms at the interface due to the doping of 0.1Ni (wt.%) elements, so the joint had the thickest NiSn4 layer. Design/methodology/approach The effects of doping minor Ni on the microstructure evolution of an Sn-xNi (x = 0, 0.05 and 0.1 Wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment was investigated in this study. Findings Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of the interfacial layer was different due to the different mechanisms of element diffusion of the two substrates. Originality/value In this study, the effect of doping Ni on the growth and formation mechanism of IMCs of the Sn-xNi/Ni (single-crystal) solder joints (x = 0, 0.05 and 0.1 Wt.%) was investigated.


2021 ◽  
Vol 904 ◽  
pp. 117-123
Author(s):  
Yi Cui ◽  
Yun Fei Zhang ◽  
Yan Guang Han ◽  
Da Lv

The effect of high temperature annealing on microstructure evolution of Ni-24Fe-14Cr-8Mo alloy was investigated through Optical Microscopy (OM), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Rockwell Hardness Testing Machine. Three kinds of grain growth patterns were found at different annealing temperatures due to carbides precipitation and dissolution. After a combination of high temperature annealing and aging treatment, the hardness versus time curves performed a parabolic pattern. The highest hardness was achieved under 1070°C/60 minutes treatment, and the desirable annealing time should be 60 minutes to 90 minutes.


2014 ◽  
Vol 881-883 ◽  
pp. 1346-1350 ◽  
Author(s):  
Ben Chen ◽  
Yu Jiao Wu ◽  
Tao Zhu ◽  
Xin Yun Li

The solution treatment of 6063 aluminum alloy was carried out and the influences of solution process on microstructure, strength, hardness, and electrical resistivity of 6063 aluminum alloy was analyzed. The result shows that the suitable solution treatment can improve alloy solution-degree fully, meanwhile the changes of electrical resistivity of alloy tend to be balanced. The suitable solution process for 6063 aluminum alloy is solution-treated at 520°C for 3.5h, and the strength and hardness of alloy can be enhanced extremely after aging-treatment at 200°C for 5h.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4223 ◽  
Author(s):  
Xi Zhao ◽  
Shuchang Li ◽  
Fafa Yan ◽  
Zhimin Zhang ◽  
Yaojin Wu

Microstructure evolution and mechanical properties of AZ80 Mg alloy during annular channel angular extrusion (350 °C) and heat treatment with varying parameters were investigated, respectively. The results showed that dynamic recrystallization of Mg grains was developed and the dendritic eutectic β-Mg17Al12 phases formed during the solidification were broken into small β-phase particles after hot extrusion. Moreover, a weak texture with two dominant peaks formed owing to the significant grain refinement and the enhanced activation of pyramidal <c + a> slip at relative high temperature. The tension tests showed that both the yield strength and ultimate tensile strength of the extruded alloy were dramatically improved owing to the joint strengthening effect of fine grain and β-phase particles as compared with the homogenized sample. The solution treatment achieved the good plasticity of the alloy resulting from the dissolution of β-phases and the development of more equiaxed grains, while the direct-aging process led to poor alloy elongation as a result of residual eutectic β-phases. After solution and aging treatment, simultaneous bonding strength and plasticity of the alloy were achieved, as a consequence of dissolution of coarse eutectic β-phases and heterogeneous precipitation of a large quantity of newly formed β-phases with both the morphologies of continuous and discontinuous precipitates.


2019 ◽  
Vol 116 (1) ◽  
pp. 120
Author(s):  
Tao Zhang ◽  
Lei Li ◽  
Shihong Lu ◽  
Zhengfang Li ◽  
Peng Chen ◽  
...  

In order to acquire flow characteristics in multi-pass hot plastic deformation and the optimized processing parameters for 7055 aluminum alloy, the double-pass hot compressive flow stress behavior was studied at the temperatures from 300 to 420 °C, the strain from 0.2 to 0.4 and the pass interval time from 10 to 100s on Gleeble-3180 thermo-simulation machine. The static recrystallization (SRX) kinetics and grain size model of 7055 aluminum alloy were acquired by regression analysis. The metallographic tests were conducted and the effects of pass interval time, temperature and strain on microstructure evolution of SRX were analyzed. The results show that 7055 aluminum alloy is temperature sensitive material and the yield flow stress decreases with ascending temperature and pass interval time. Large strain, high temperature and long pass interval time are beneficial to larger SRX fraction and grain refinement. The investigation of flow characteristic and microstructure evolution can be a guidance to acquire optimized processing parameters for multi-pass hot deformation of 7055 aluminum alloy.


2016 ◽  
Vol 677 ◽  
pp. 203-210 ◽  
Author(s):  
Shengdan Liu ◽  
Shaoling Wang ◽  
Lingying Ye ◽  
Yunlai Deng ◽  
Xinming Zhang

Sign in / Sign up

Export Citation Format

Share Document