The Effects of Solid-Solution on Properties and Microstructure of 6063 Aluminum Alloy

2014 ◽  
Vol 881-883 ◽  
pp. 1346-1350 ◽  
Author(s):  
Ben Chen ◽  
Yu Jiao Wu ◽  
Tao Zhu ◽  
Xin Yun Li

The solution treatment of 6063 aluminum alloy was carried out and the influences of solution process on microstructure, strength, hardness, and electrical resistivity of 6063 aluminum alloy was analyzed. The result shows that the suitable solution treatment can improve alloy solution-degree fully, meanwhile the changes of electrical resistivity of alloy tend to be balanced. The suitable solution process for 6063 aluminum alloy is solution-treated at 520°C for 3.5h, and the strength and hardness of alloy can be enhanced extremely after aging-treatment at 200°C for 5h.

Author(s):  
Seyed Mahmoud Ghalehbandi ◽  
Alireza Fallahi Arezoodar ◽  
Hossein Hosseini-Toudeshky

Effect of aging treatment on mechanical properties of an age-hardenable aluminum alloy after equal channel angular pressing at room temperature has been investigated using hardness, stress–strain behavior and surface fractography. Aluminum alloy 7075 was pressed after solution treatment. Yield stress, ultimate stress and hardness of pressed samples have increased significantly compared with those of coarse grain, but the elongation to failure has decreased. Also the pressed specimens were subjected to aging treatment at room temperature and temperatures of 80 °C, 100 °C, 120 °C and 140 °C to obtain the optimized strength and ductility. The results indicated that post–equal channel angular pressing aging at 80 °C has resulted in the maximum strength, and natural aging has resulted in good ductility and acceptable strength. It confirmed the fact that there is a potential in obtaining high strength and good ductility in age-hardenable alloys employing severe plastic deformation and subsequent aging.


2015 ◽  
Vol 713-715 ◽  
pp. 2617-2623
Author(s):  
Jun Ping Yuan ◽  
Chun Yu Ma ◽  
Chang Wang

The hardness of pure gold jewellery is low which makes it difficult to meet structural design and performance requirements, and restricts its artistic value. In this research, scandium, calcium, and magnesium were used as alloying elements with pure gold, and the microstructure and hardening behaviour of modified pure gold were studied through cold-working, solid solution, and aging treatment. The results showed that the as-cast hardness of an Sc-Ca-Mg alloyed pure gold could reach HV64: after solution treatment at 700 °C, the hardness could reach HV55, and the microstructure in its solid solution state presented a homogeneous single phase. When the modified pure gold was deformed and the deformation rate reached 80%, the hardness reached HV118, after aging treatment at 250 °C and small precipitation phases were dispersed in its structure; the resultant grain size was finer than that of pure gold, and the hardness reached HV133. The hardening behaviour of this modified pure gold was the comprehensive effect of solid solution strengthening, fine-grain strengthening, deformation strengthening, and precipitation strengthening.


2019 ◽  
Vol 16 (4) ◽  
pp. 445-451
Author(s):  
Souad Bettayeb ◽  
Zakaria Boumerzoug ◽  
Cherif Saib

Purpose The purpose of this paper is to present the effect of the aging at 200°C on creep and hardening behavior of hardenable 6101 aluminum alloy manufactured by an industrial wiredrawing process used for construction of self-supporting overhead aerial power line conductors. Design/methodology/approach The creep tests were carried out under applied constant stress 100 MPa and constant temperature 150°C. Hardness measurements were also used to investigate the mechanical behavior of the aged alloy. Micrographs of the fractured wires by creep tests were performed by scanning electron microscope. Electrical resistivity of the aged alloy was measured at different time of the aging treatment. Findings The authors have found the relationship between the precipitation sequence, the mechanical properties and the electrical resistivity of aged 6101 aluminum alloy. Originality/value The optimum properties were also deduced.


2014 ◽  
Vol 915-916 ◽  
pp. 650-653
Author(s):  
Li Jun Wei ◽  
Bo Long Li ◽  
Liu Yi Guan ◽  
Zuo Ren Nie

The effect of the alloying elements Cu and Mg, the solution and artificial aging process on the microstructure and property were investigated. Solution treatment was carried out at 535 ± 5°C in different time for the Al-Si-Cu-Mg casting alloy, and the artificial aging was carried out at 160 ± 5°C and 175 ± 5°C and190 ± 5°C in different time. The microstructure has been investigated by Optical Microscopy, Scanning Electron Microscopy (SEM). We found that most of Cu and Mg element in the alloy gathered and formed multivariate composite phase at grain boundaries. With the increasing of solid solution time, the intermetallic phases will be dissolution into the matrix, and if the solid solution time is long enough, they will be distributed uniformly in alloy. With the increase of the aging temperature, the time for aging peak will be shorter, but the peak will be lower. Finally, we determine the optimum heat treatment process is 535°C × 12h + 175°C × 8h。


2011 ◽  
Vol 695 ◽  
pp. 405-408 ◽  
Author(s):  
Ho Seob Yun ◽  
Joon Sik Park ◽  
Seong Uk An ◽  
Jeong Min Kim

It was observed that both primary and secondary gamma prime precipitates were more significantly influenced by the solid solution treatment temperature as compared to the following cooling rate. Single and duplex size precipitate distribution with different average size could be obtained through the appropriate solid solution and aging treatment. Micro-hardness test result indicated that single size distribution of gamma prime precipitates provides higher hardness than duplex size distribution.


2011 ◽  
Vol 194-196 ◽  
pp. 1319-1325
Author(s):  
Zheng Tian ◽  
Zhan Yi Cao ◽  
Jian Meng

The effect of yttrium addition and heat treatment on the mechanical properties and microstructure of AM60 magnesium alloy have been investigated using X-ray phase analysis, microstructure investigation, tensile test, hardness measurement and fracture surfaces analysis. The results showed that the mechanical properties of the alloys were obviously improved with the addition of yttrium no more than 1.0%. The reinforcement of the alloys resulted from the appearance of Al2Y phase. After solid-solution treatment (T4), the Mg17Al12 phase almost dissolved in Mg matrix, but the rare earth compounds Al2Y phase was rather stable. The ultimate tensile strength σb was improved, but the yield strength σ0.2 and elongation δ were only slightly changed. After solid-solution + aging treatment (T6), the Mg17Al12 phase precipitated again and their morphology was changed. The yield strength σ0.2 was improved.


Sign in / Sign up

Export Citation Format

Share Document