Fresh groundwater resources and their use in emergencies

2015 ◽  
Vol 42 (4) ◽  
pp. 405-419 ◽  
Author(s):  
I. S. Zektser ◽  
O. A. Karimova ◽  
A. V. Chetverikova
2020 ◽  
Vol 8 (11) ◽  
pp. 944
Author(s):  
Demetrios Hermides ◽  
Panayota Makri ◽  
George Kontakiotis ◽  
Assimina Antonarakou

This study focuses on the hydrogeological conditions in the coastal (Thriassion plain) and submarine (Eleusis Gulf) environment of West Attica, Greece. Up to now, the predominant aspect for the Thriassion plain groundwater—hosted within the Neogene-Quaternary sediments—was its direct hydraulic contact with the seawater. Due to that, the coastal plain groundwater is strongly believed to be of brackish quality irrespective of the local hydrodynamic conditions. Our major goal is to evaluate the actual mechanism controlling the groundwater flow, the origin and distribution of saline water, and the existence of fresh groundwater in the submarine environment. We summarize the following: (1) groundwater of the Thriassion plain is partly discharged as an upwards leakage from deeper aquifers, (2) modern direct seawater intrusion is not possible in the Neogene-Quaternary sediments, and (3) fresh groundwater possibly exists below the sea floor of the Eleusis Gulf. The results may serve as hint of further research in groundwater resources below the Mediterranean Sea floor, and, consequently, a new perspective on water resource management could emerge.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1690 ◽  
Author(s):  
Marmar Mabrouk ◽  
Andreja Jonoski ◽  
Gualbert H. P. Oude Essink ◽  
Stefan Uhlenbrook

As Egypt’s population increases, the demand for fresh groundwater extraction will intensify. Consequently, the groundwater quality will deteriorate, including an increase in salinization. On the other hand, salinization caused by saltwater intrusion in the coastal Nile Delta Aquifer (NDA) is also threatening the groundwater resources. The aim of this article is to assess the situation in 2010 (since this is when most data is sufficiently available) regarding the available fresh groundwater resources and to evaluate future salinization in the NDA using a 3D variable-density groundwater flow model coupled with salt transport that was developed with SEAWAT. This is achieved by examining six future scenarios that combine two driving forces: increased extraction and sea level rise (SLR). Given the prognosis of the intergovernmental panel on climate change (IPCC), the scenarios are used to assess the impact of groundwater extraction versus SLR on the seawater intrusion in the Delta and evaluate their contributions to increased groundwater salinization. The results show that groundwater extraction has a greater impact on salinization of the NDA than SLR, while the two factors combined cause the largest reduction of available fresh groundwater resources. The significant findings of this research are the determination of the groundwater volumes of fresh water, brackish, light brackish and saline water in the NDA as a whole and in each governorate and the identification of the governorates that are most vulnerable to salinization. It is highly recommended that the results of this analysis are considered in future mitigation and/or adaptation plans.


Radiocarbon ◽  
2000 ◽  
Vol 42 (1) ◽  
pp. 99-114 ◽  
Author(s):  
Mebus A Geyh

This paper provides a summary overview of the current state-of-art in the radiocarbon dating of groundwater. While the use of natural 14C measurements in applied hydrogeology still presents a difficult challenge, meaningful dates can be achieved if they are determined and interpreted in conjunction with the analyses of other isotopic species that occur in the natural environment. Although 14C dating of groundwater can be, and often is, carried out as a matter of routine, any specific case study requires its own scientific design and effort. As is widely recognized, and discussed in considerable detail throughout the scientific literature, there are many hydrogeochemical reactions and/or physical processes that can alter the natural 14C enrichment measured in environmental materials. Fortunately, for fresh groundwater resources such effects are in general well defined and therefore of limited significance. The primary challenge in applied groundwater dating is with the development of the appropriate theoretical background against which 14C dates can be used to calibrate numerical analogues of the groundwater system. The hydraulic properties of each of the widely used finite-element models can be well estimated from numerous piezometric data and extrapolations. In contrast, only a few groundwater ages can be provided for the calibration of those models that are complex functions of aging mixture and sometimes also hydrochemical reactions.


2016 ◽  
Vol 75 (4) ◽  
Author(s):  
Sahebrao Sonkamble ◽  
Subash Chandra ◽  
V. K. Somvanshi ◽  
Shakeel Ahmed

2006 ◽  
Vol 16 (4) ◽  
pp. 388-399 ◽  
Author(s):  
Priyantha Ranjan ◽  
So Kazama ◽  
Masaki Sawamoto

Author(s):  
Daniel Zamrsky ◽  
Gualbert Oude Essink ◽  
Edwin Sutanudjaja ◽  
Rens van Beek ◽  
Marc F P Bierkens

Abstract Coastal areas worldwide are often densely populated and host regional agricultural and industrial hubs. Strict water quality requirements for agricultural, industrial and domestic use are often not satisfied by surface waters in coastal areas and consequently lead to over-exploitation of local fresh groundwater resources. Additional pressure by both climate change and population growth further intensifies the upcoming water stress and raise the urgency to search for new fresh water sources. In recent years, offshore fresh groundwater reserves have been identified as such a potential water source. In this study, we quantify, for the first time, the global volume of offshore fresh groundwater in unconsolidated coastal aquifers and show that it is a viable option as additional fresh water source in coastal areas. Our results confirm previously reported widespread presence of offshore fresh groundwater along the global coastline. Furthermore, we find that these reserves are likely non-renewable as they were deposited during glacial periods when sea levels were substantially lower compared to current sea level. We estimate the total offshore fresh groundwater volume in unconsolidated coastal aquifers to be approximately 1.06 ± 0.2 million km³, which is roughly three times more than estimated previously and about 10% of all terrestrial fresh groundwater. With extensive active and inactive offshore oil pumping present in areas of large offshore fresh groundwater reserves, they could be considered for temporary fresh groundwater exploration as part of a transition to sustainable water use in coastal areas on the long run.


2021 ◽  
Author(s):  
Maria Elisa Travaglino ◽  
Pietro Teatini

<p>Saltwater intrusion in coastal aquifers is one of the most challenging and worldwide environmental problems, severely affected by human activities and climate change. It represents a threat to the quality and sustainability of fresh groundwater resources in coastal aquifers. Saline water is the most common pollutant in fresh groundwater which can also compromise the agriculture and the economy of the affected regions. Therefore, it is necessary to develop engineering solutions to restore groundwater quality or at least to prevent further degradation of its quality.</p><p>For this purpose, the goal of the Interreg Italy – Croatia MoST (MOnitoring Sea-water intrusion in coastal aquifers and Testing pilot projects for its mitigation) project is to test possible solutions (such as underground barriers, cut-off walls, recharge wells and recharge drains) against saltwater intrusion properly supported by field characterization, laboratory experiments, monitoring of hydrological parameters, and numerical models.</p><p>This works shows the preliminary results of an ongoing modelling study carried out for a coastal farmland at Ca’ Pasqua, in the southern part of the Venice lagoon, in Italy. A three-dimensional finite-element density-dependent groundwater flow and transport model is developed to simulate the dynamics of saltwater intrusion in this lowlying area. The model is used to assess the potential effects of a recharge drain recently established at 1.5 m depth along a sandy paleochannel crossing the organic-silty area. The goal of the intervention is to mitigate the soil and groundwater salinization by spreading freshwater supplied by a nearby canal. The beneficial consequences of the recharge drain should be enhanced by the higher permeability of the paleochannel.</p>


2021 ◽  
Author(s):  
Joeri van Engelen ◽  
Gualbert Oude Essink ◽  
Marc Bierkens

<p>Increasing population, growth of cities and intensifying irrigated agriculture in the world’s deltas promote the demand for fresh water resources, accelerating groundwater extraction. This, in turn, leads to sea water intrusion and salt water upconing, which threaten near-future water and food security. Proper water management in deltas requires precise knowledge about the current status of the deltas’ fresh groundwater resources, in the form of a groundwater salinity distribution. However, this knowledge is scarcely present, especially at larger depths. In this research, we applied three-dimensional variable-density groundwater model simulations over the last 125 ka to estimate present-day fresh groundwater volumes for several major deltas around the world. We also compared these to current extraction rates and estimated the time until in-situ fresh groundwater resources are completely exhausted (ignoring local-scale problems), partly leading to groundwater level decline and mostly replacement with river water or saline groundwater. In this presentation we will share our findings, for example which deltas’ groundwater reserves presumably are under stress.</p>


Sign in / Sign up

Export Citation Format

Share Document