scholarly journals An Overview of 14C Analysis in the Study of Groundwater

Radiocarbon ◽  
2000 ◽  
Vol 42 (1) ◽  
pp. 99-114 ◽  
Author(s):  
Mebus A Geyh

This paper provides a summary overview of the current state-of-art in the radiocarbon dating of groundwater. While the use of natural 14C measurements in applied hydrogeology still presents a difficult challenge, meaningful dates can be achieved if they are determined and interpreted in conjunction with the analyses of other isotopic species that occur in the natural environment. Although 14C dating of groundwater can be, and often is, carried out as a matter of routine, any specific case study requires its own scientific design and effort. As is widely recognized, and discussed in considerable detail throughout the scientific literature, there are many hydrogeochemical reactions and/or physical processes that can alter the natural 14C enrichment measured in environmental materials. Fortunately, for fresh groundwater resources such effects are in general well defined and therefore of limited significance. The primary challenge in applied groundwater dating is with the development of the appropriate theoretical background against which 14C dates can be used to calibrate numerical analogues of the groundwater system. The hydraulic properties of each of the widely used finite-element models can be well estimated from numerous piezometric data and extrapolations. In contrast, only a few groundwater ages can be provided for the calibration of those models that are complex functions of aging mixture and sometimes also hydrochemical reactions.

Author(s):  
A. R. Kurchikov ◽  
◽  
M. V. Vashurina ◽  
V. I. Kozyrev ◽  
◽  
...  

This article examines the resource potential and modern extraction of fresh groundwater for the needs of population and economic sectors in the Khanty-Mansi Autonomous Okrug – Yugra. The history of regional hydrogeological studies on the assessment of natural resources and exploitation reserves of groundwater reserves of the West Siberian mega-basin (WSMB) is revealed. The research results are shown and their comparative analysis is carried out. The article highlights the issue of formation and distribution of natural resources over the area of the considered territory. In conclusion, it is noted that the territory of the Khanty-Mansi Autonomous Okrug – Yugra is sufficiently supplied with natural resources of fresh groundwater (the predicted useful groundwater resources supply is 66.86 m3/day per person). However, more than 20 years have passed since the implementation of regional works on the assessment of predicted groundwater resources in the territory of the Khanty-Mansi Autonomous Okrug. During this period, the water-economic situation in the region has changed significantly, a large amount of factual material, which makes it possible to clarify and probably to revise the previously obtained results has been accumulated.


2013 ◽  
Vol 12 (11) ◽  
pp. 2239-2247 ◽  
Author(s):  
Guomin Li ◽  
Haizhen Xu ◽  
Ming Li ◽  
Shouquan Zhang ◽  
Yanhui Dong ◽  
...  

1991 ◽  
Vol 24 (11) ◽  
pp. 51-62 ◽  
Author(s):  
N. Guiguer ◽  
T. Franz

In the last few years, groundwater management has concentrated on the protection of groundwater quality. An increasing number of countries has adopted policies to protect vital groundwater resources from deterioration by regulating human interaction with the subsurface, the use of potential contaminants, land use restrictions, and waste transport and storage. One of the more common regulatory approaches to the protection of groundwater focuses on public water supplies to reduce the potential of human exposure to hazardous contaminants. Under the framework of the Safe Drinking Water Act amended by U.S. Congress in 1986, The U.S.EPA (1987) issued guidelines for the delineation of wellhead protection areas, recommending the use of analytical and numerical models for the identification of such areas. In this study, the theoretical background for the development of one such numerical model is presented. Two real-world applications are discussed: in the first case history, the model is applied to a Superfund Site in Puerto Rico as a tool for assessment of the effectiveness of a proposed pump-and-treat scheme for aquifer remediation. Based on simulation results for the evolution of the existing contaminant plume it was verified that such a scheme would not work with the proposed purging wells. The second case history is the delineation of a wellhead protection area in the Town of Littleton, Massachusetts, and subsequent design of a monitoring well network.


2019 ◽  
Vol 6 (1) ◽  
pp. 40-49
Author(s):  
Teresa Paiva

Background: The theoretical background of this article is on the model developed of knowledge transfer between universities and the industry in order to access the best practices and adapt to the study case in question regarding the model of promoting and manage innovation within the universities that best contribute with solution and projects to the business field. Objective: The development of a knowledge transfer model is the main goal of this article, supported in the best practices known and, also, to reflect in the main measurement definitions to evaluate the High Education Institution performance in this area. Methods: The method for this article development is the case study method because it allows the fully understanding of the dynamics present within a single setting, and the subject examined to comprehend what is being done and what the dynamics mean. The case study does not have a data collection method, as it is a research that may rely on multiple sources of evidence and data which should be converged. Results: Since it’s a case study this article present a fully description of the model proposed and implemented for the knowledge transfer process of the institution. Conclusion: Still in a discussion phase, this article presents as conclusions some questions and difficulties that could be pointed out, as well as some good perspectives of performed activity developed.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 683
Author(s):  
Birte Moser ◽  
Meruyert Beknazarova ◽  
Harriet Whiley ◽  
Thilini Piushani Keerthirathne ◽  
Nikki Harrington ◽  
...  

Iron-related clogging of boreholes, pumps and dripper lines is a significant and costly problem for irrigators worldwide. The primary cause of iron-related clogging is still debated. Previous studies have described complex interactions between biological clogging and inorganic iron/manganese oxide precipitation. This case study examined groundwater bores used for viticulture irrigation in the Limestone Coast region, a highly productive wine growing area in the SE of South Australia. Iron clogging of bore screens, pumps and dripper systems has been a persistent problem in the region and the issue is perceived to be growing, with irrigators suggesting the widespread introduction of iron-related bacteria (IRB) through drilling equipment to be the root cause of the problem. Analysis of the groundwater microbiology and inorganic chemistry found no apparent correlation between the presence of IRB and the clogging status of wells. In fact, IRB proved to be widespread throughout the limestone aquifer. However, a clear correlation could be found between clogging affected bores and the redox potential of the groundwater with the most severely affected bores strongly oversaturated in respect to iron oxide minerals. Elevated dissolved concentrations of Fe(II) thereby tended to be found in deeper bores, which also were generally more recently drilled. Following decades of less than average rainfall, a tendency to deepen bores in response to widespread declines in water levels has been documented for the SE of South Australia. The gradually widening clogging problem in the region is postulated to be related to the changes in climate in the region, with irrigators increasingly driven to rely on deeper, anoxic iron-rich groundwater resources.


2021 ◽  
Vol 10 (6) ◽  
pp. 386
Author(s):  
Jennie Gray ◽  
Lisa Buckner ◽  
Alexis Comber

This paper reviews geodemographic classifications and developments in contemporary classifications. It develops a critique of current approaches and identifiea a number of key limitations. These include the problems associated with the geodemographic cluster label (few cluster members are typical or have the same properties as the cluster centre) and the failure of the static label to describe anything about the underlying neighbourhood processes and dynamics. To address these limitations, this paper proposed a data primitives approach. Data primitives are the fundamental dimensions or measurements that capture the processes of interest. They can be used to describe the current state of an area in a multivariate feature space, and states can be compared over multiple time periods for which data are available, through for example a change vector approach. In this way, emergent social processes, which may be too weak to result in a change in a cluster label, but are nonetheless important signals, can be captured. As states are updated (for example, as new data become available), inferences about different social processes can be made, as well as classification updates if required. State changes can also be used to determine neighbourhood trajectories and to predict or infer future states. A list of data primitives was suggested from a review of the mechanisms driving a number of neighbourhood-level social processes, with the aim of improving the wider understanding of the interaction of complex neighbourhood processes and their effects. A small case study was provided to illustrate the approach. In this way, the methods outlined in this paper suggest a more nuanced approach to geodemographic research, away from a focus on classifications and static data, towards approaches that capture the social dynamics experienced by neighbourhoods.


2021 ◽  
Vol 11 (1) ◽  
pp. 376
Author(s):  
Giacomo Cillari ◽  
Fabio Fantozzi ◽  
Alessandro Franco

Passive solar system design is an essential asset in a zero-energy building perspective to reduce heating, cooling, lighting, and ventilation loads. The integration of passive systems in building leads to a reduction of plant operation with considerable environmental benefits. The design can be related to intrinsic and extrinsic factors that influence the final performance in a synergistic way. The aim of this paper is to provide a comprehensive view of the elements that influence passive solar systems by means of an analysis of the theoretical background and the synergistic design of various solutions available. The paper quantifies the potential impact of influencing factors on the final performance and then investigates a case study of an existing public building, analyzing the effects of the integration of different passive systems through energy simulations. General investigation has highlighted that latitude and orientation impact energy saving on average by 3–13 and 6–11 percentage points, respectively. The case study showed that almost 20% of the building energy demand can be saved by means of passive solar systems. A higher contribution is given by mixing direct and indirect solutions, as half of the heating and around 25% of the cooling energy demand can be cut off.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3366
Author(s):  
Daniel Suchet ◽  
Adrien Jeantet ◽  
Thomas Elghozi ◽  
Zacharie Jehl

The lack of a systematic definition of intermittency in the power sector blurs the use of this term in the public debate: the same power source can be described as stable or intermittent, depending on the standpoint of the authors. This work tackles a quantitative definition of intermittency adapted to the power sector, linked to the nature of the source, and not to the current state of the energy mix or the production predictive capacity. A quantitative indicator is devised, discussed and graphically depicted. A case study is illustrated by the analysis of the 2018 production data in France and then developed further to evaluate the impact of two methods often considered to reduce intermittency: aggregation and complementarity between wind and solar productions.


Sign in / Sign up

Export Citation Format

Share Document