Differential Migration of Birds: Diversity and Inconsistency

2020 ◽  
Vol 47 (7) ◽  
pp. 724-734
Author(s):  
V. A. Payevsky
The Auk ◽  
2005 ◽  
Vol 122 (1) ◽  
pp. 71-81 ◽  
Author(s):  
Alexander M. Mills

AbstractProtandry, the earlier arrival of males than of females on breeding areas, occurs in many taxa, including many migratory birds. Numerous hypotheses have been generated to explain protandry. Using bird-banding records, I show that protogyny, the earlier migration of females, frequently occurs in the autumn, though it is less universal and less dramatic than spring protandry. In one species, it occurs in both hatch-year and adult birds. When (1) spring and autumn, (2) departures and arrivals, and (3) breeding and wintering ground conditions are considered, hypotheses generated only to explain spring protandry can be more thoroughly evaluated. Using that approach, the most parsimonious explanation of differential migration between the sexes explains earlier male arrival in spring and later male departure in autumn through either (1) indirect selection operating on intrasexual male competition for territories or (2) direct selection operating on intersexual relations requiring males to be present on breeding territories when females are present. In autumn-protogynous species, males may ”play chicken,” balancing the benefits of remaining longer than females and protecting territories for subsequent years against the costs of remaining in the north under deteriorating conditions and delaying the acquisition of a good winter territory.Protogynie et migration automnale: Est-ce que les mâles ”jouent les dégonflés”?


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Jonas Wobker ◽  
Wieland Heim ◽  
Heiko Schmaljohann

Abstract Sex- and age-specific differences in the timing of migration are widespread among animals. In birds, common patterns are protandry, the earlier arrival of males in spring, and age-differential migration during autumn. However, knowledge of these differences stems mainly from the Palearctic-African and Nearctic-Neotropical flyways, while detailed information about the phenology of migrant birds from the East Asian flyway is far scarcer. To help fill parts of this gap, we analyzed how migration distance, sex, age, and molt strategy affect the spring and autumn phenologies of 36 migrant songbirds (altogether 18,427 individuals) at a stopover site in the Russian Far East. Sex-differential migration was more pronounced in spring than in autumn, with half of the studied species (6 out of 12) showing a protandrous migration pattern. Age-differences in migration were rare in spring but found in nearly half of the studied species (11 out of 25) in autumn. These age effects were associated with the birds’ molt strategy and the mean latitudinal distances from the assumed breeding area to the study site. Adults performing a complete molt before the onset of autumn migration passed the study site later than first-year birds undergoing only a partial molt. This pattern, however, reversed with increasing migration distance to the study site. These sex-, age-, and molt-specific migration patterns agree with those found along other flyways and seem to be common features of land bird migration strategies. Significance statement The timing of animal migration is shaped by the availability of resources and the organization of annual cycles. In migrant birds, sex- and age-differential migration is a common phenomenon. For the rarely studied East Asian flyway, we show for the first time and based on a large set of migrant songbirds that earlier migration of males is a common pattern there in spring. Further, the timing and extent of molt explained age-differential migration during autumn. Adults molting their complete plumage at the breeding area before migration showed delayed phenology in comparison to first-year birds, which perform only a partial molt. This pattern, however, reversed with increasing migration distance to the study site. Since our results agree with the general patterns from the other migration flyways, similar drivers for differential migration may act across different flyway systems, provoking a similar evolutionary response.


Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 689-703 ◽  
Author(s):  
Michael J Ford ◽  
Charles F Aquadro

Abstract We present the results of a restriction site survey of variation at five loci in Drosophila athabasca, complimenting a previous study of the period locus. There is considerably greater differentiation between the three semispecies of D. athabasca at the period locus and two other X-linked genes (neon-transient-A and E74A) than at three autosomal genes (Xdh, Adh and RC98). Using a modification of the HKA test, which uses fixed differences between the semispecies and a test based on differences in Fst among loci, we show that the greater differentiation of the X-linked loci compared with the autosomal loci is inconsistent with a neutral model of molecular evolution. We explore several evolutionary scenarios by computer simulation, including differential migration of X and autosomal genes, very low levels of migration among the semispecies, selective sweeps, and background selection, and conclude that X-linked selective sweeps in at least two of the semispecies are the best explanation for the data. This evidence that natural selection acted on the X-chromosome suggests that another X-linked trait, mating song differences among the semispecies, may have been the target of selection.


1972 ◽  
Vol 56 (6) ◽  
pp. 518-521 ◽  
Author(s):  
Bernard M. Bass ◽  
Ralph A. Alexander

Development ◽  
1993 ◽  
Vol 118 (1) ◽  
pp. 151-162 ◽  
Author(s):  
J.D. Clarke ◽  
A. Lumsden

The neurons within the segmented hindbrain of the early chick embryo have been mapped with the neuronal tracers HRP and fluorescent lysinated dextran. We have categorised neurons according to their axonal pathways and have then compared rhombomeres with respect to the number and class of neurons present. The results indicate that most rhombomeres are similar in that they contain the same set of basic neuronal types but differ in that particular neuronal types are more abundant in some rhombomeres than others. The data support the concept that the hindbrain develops according to ‘variations on a segmental theme’ rather than ‘each segment is unique’. Many of the cell types occupy distinct mediolateral domains that are probably established by both the differential migration of some neuronal classes and the spatial segregation of distinct precursors. The caudal rhombomeres 7 and 8 are exceptional in that they do not have the full set of basic neuronal types and also contain two additional medial cell types that are not present rostrally. The mechanisms that may generate the regional diversity apparent in the more mature hindbrain are discussed.


2018 ◽  
Vol 14 (12) ◽  
pp. 20180679 ◽  
Author(s):  
Martins Briedis ◽  
Silke Bauer

Understanding how breeding populations are spatially and temporarily associated with one another over the annual cycle has important implications for population dynamics. Migratory connectivity typically assumes that populations mix randomly; yet, in many species and populations, sex-, age- or other subgroups migrate separately, and/or spend the non-breeding period separated from each other—a phenomenon coined differential migration. These subgroups likely experience varying environmental conditions, which may carry-over to affect body condition, reproductive success and survival. We argue that environmental or habitat changes can have disproportional effects on a population's demographic rates under differential migration compared to random mixing. Depending on the relative contribution of each of these subgroups to population growth, environmental perturbations may be buffered (under-proportional) or amplified (over-proportional). Thus, differential migration may result in differential mortality and carry-over effects that can have concomitant consequences for dynamics and resilience of the populations. Recognizing the role of differential migration in migratory connectivity and its consequences on population dynamics can assist in developing conservation actions that are tailored to the most influential demographic group(s) and the times and places where they are at peril.


Lab on a Chip ◽  
2008 ◽  
Vol 8 (11) ◽  
pp. 1906 ◽  
Author(s):  
Ali Asgar S. Bhagat ◽  
Sathyakumar S. Kuntaegowdanahalli ◽  
Ian Papautsky

2012 ◽  
Vol 154 (2) ◽  
pp. 321-328 ◽  
Author(s):  
Ivan Maggini ◽  
Fernando Spina ◽  
Christian C. Voigt ◽  
Andrea Ferri ◽  
Franz Bairlein

Sign in / Sign up

Export Citation Format

Share Document