Transformation of the Surface Layer in the Arable Soil Horizon under the Impact of Atmospheric Precipitation

2021 ◽  
Vol 54 (11) ◽  
pp. 1770-1781
Author(s):  
E. Yu. Prudnikova ◽  
I. Yu. Savin ◽  
M. P. Lebedeva ◽  
D. S. Volkov ◽  
O. B. Rogova ◽  
...  
2021 ◽  
Vol 6 (6) ◽  
pp. 79
Author(s):  
Nuno M. M. Ramos ◽  
Joana Maia ◽  
Andrea R. Souza ◽  
Ricardo M. S. F. Almeida ◽  
Luís Silva

Near-infrared (NIR) reflective materials are being developed for mitigating building cooling needs. Their use contributes to broadening the range of colours, responding to the urban aesthetic demand without compromising the building performance. Despite the increase in NIR reflective pigments investigation, there is still a knowledge gap in their applicability, impact, and durability in multilayer finishing coatings of External Thermal Insulation Composite Systems (ETICS). Hence, the main goal of this work consists of evaluating the impact of incorporating NIR reflective pigments (NRP) in the solar reflectance of the surface layer of ETICS, without affecting the colour perception, as well as their influence on the colour durability and surface temperature. As such, colour, solar reflectance, and surface temperature were monitored for 2 years in dark-coloured specimens of ETICS, with and without NRP and a primer layer. It was confirmed that the main contribution of NRP is the increase of solar reflectance and, consequently, the decrease in surface temperature, especially for high exterior temperatures (around 30 ºC). Moreover, these pigments highly increase the NIR reflectance without affecting the visible colour. In addition, they contribute to maintaining the colour characteristics. The application of primer increased the surface temperature, especially for higher exterior temperatures. However, it contributes to a lower colour difference and solar reflectance variation, which is an important achievement for durability purposes.


2020 ◽  
Vol 12 (22) ◽  
pp. 3777
Author(s):  
Yuhui Li ◽  
Yun Qiu ◽  
Jianyu Hu ◽  
Cherry Aung ◽  
Xinyu Lin ◽  
...  

Multisource satellite remote sensing data and the World Ocean Atlas 2018 (WOA18) temperature and salinity dataset have been used to analyze the spatial distribution, variability and possible forcing mechanisms of the upwelling off Manaung Island, Myanmar. Signals of upwelling exist off the coasts of Manaung Island, in western Myanmar during spring. It appears in February, reaches its peak in March and decays in May. Low-temperature (<28.3 °C) and high-salinity (>31.8 psu) water at the surface of this upwelling zone is caused by the upwelling of seawater from a depth below 100 m. The impact of the upwelling on temperature is more significant in the subsurface layer than that in the surface layer. In contrast, the impact of the upwelling on salinity in the surface layer is more significant. Further research reveals that the remote forcing from the equator predominantly induces the evolution of the upwelling, while the local wind forcing also contributes to strengthen the intensity of the upwelling during spring.


2017 ◽  
Vol 164 (4) ◽  
pp. A655-A665 ◽  
Author(s):  
Jing Li ◽  
Hanshuo Liu ◽  
Jian Xia ◽  
Andrew R. Cameron ◽  
Mengyun Nie ◽  
...  

Author(s):  
Вячеслав Безъязычный ◽  
Vyacheslav Bezyazychnyy ◽  
Максим Басков ◽  
Maksim Baskov

The impact of cutter wear-resistant coatings upon cutting process parameters and characteristics of surface layer quality in the parts worked: residual stresses, a degree and a depth of work hardening of a surface layer, surface roughness is investigated.


The quality of surface water remains an important issue today. This is particularly acute for water bodies located in the urban-basin geosystems. Purpose. To estimate pressure of atmospheric precipitation within the urban landscape basin geosystem on the river water (by example of the Kharkiv river). Methods. Field landscaping, ecological, landscape-geochemical; analytical; system analysis; chemical analytical; statistical Results. An assessment of the state of surface waters under the impact from the surface runoff of atmospheric origin during 2014-2016, and partly from 2017-2019, formed under the influence of the transport (partly residential) subsystem of the urban area and surface waters in Kharkiv. On the salt content, the characteristic of water quality is "moderately polluted" (1,6); on the tropho-saprobiological indicators, the quality of water is characterized as "polluted" (from 3.1 to 2.75 along the river). It is in this context the impact of waters, which is formed in the conditions of the urban environment for the quality of natural waters, is well demonstrated. The presence of high values of pollutants and natural factors. The assessment of the quality of water on the content of specific indicators is "moderately polluted" (from 2.28 to 1.85). Conclusions. The water of the Kharkiv region, which has a strong influence from the urban environment, has a grade III quality; the water is "moderately polluted". Environmental assessment indicates the impact of surface runoff already on the middle part of the river, which increases in accordance with the conditions of the operation of urban landscapes and anthropogenic (transport) load.


Author(s):  
Андрей Киричек ◽  
Andrey Kirichek ◽  
Дмитрий Соловьев ◽  
Dmitriy Solovyev ◽  
Александр Хандожко ◽  
...  

The problems of analyzing metallographic images and the method of their solution using modern software for the analysis of metallographic images are described. There is given an analysis of microstructure images as the main indicator of the surface layer quality by the example of studying the research results of strain wave hardening combinations and chemical-thermal treatment, in particular the influence of previous strain wave hardening and subsequent thermal and chemical- thermal treatment on the alloy steel microstructure or previous thermal and chemical- thermal treatment and subsequent strain wave hardening. On the basis of the analysis the effectiveness of strain wave hardening and chemical and thermal treatment is established.


2020 ◽  
Vol 308 ◽  
pp. 110-118
Author(s):  
Mirosław Bonek ◽  
Eva Tillová

The article presents the results of research on the impact of laser surface treatment on selected steel properties. The laser treatment consisted of remelting and alloying high speed steel using hard ceramic phase powders. A high-power diode laser was used in the experiment to examine the effect of parameters such as beam power and powder type on the structure and properties of the surface layer. A structural mechanism was observed consisting in obtaining, after laser processing, a super fine crystalline structure and a dendritic structure at the remelting zone. Structural changes have been found to be associated with improved properties such as hardness, microhardness and wear resistance. Steel treated with conventional heat treatment was used as a comparative material.


2018 ◽  
Author(s):  
Benoît Tranchant ◽  
Elisabeth Remy ◽  
Eric Greiner ◽  
Olivier Legalloudec

Abstract. Monitoring Sea Surface Salinity (SSS) is important for understanding and forecasting the ocean circulation. It is even crucial in the context of the acceleration of the water cycle. Until recently, SSS was one of the less observed essential ocean variables. Only sparse in situ observations, most often closer to 5 meters deep than the surface, were available to estimate the SSS. The recent satellite missions of ESA's SMOS, NASA's Aquarius, and now SMAP have made possible for the first time to measure SSS from space. The SSS drivers can be quite different than the temperature ones. The model SSS can suffer from significant errors coming not only from the ocean dynamical model but also the atmospheric precipitation and evaporation as well as ice melting and river runoff. Satellite SSS can bring a valuable additional constraint to control the model salinity. In the framework of the SMOS Nino 2015 ESA project (https://www.godae-oceanview.org/projects/smos-nino15/), the impact of satellite SSS data assimilation is assessed with the Met Office and Mercator Ocean global ocean analysis and forecasting systems with a focus on the Tropical Pacific region. This article presents the analysis of an Observing System Experiment (OSE) conducted with the 1/4° resolution Mercator Ocean analysis and forecasting system. SSS data assimilation constrains the model SSS to be closer to the observations in a coherent way with the other data sets already routinely assimilated in an operational context. Globally, the SMOS SSS assimilation has a positive impact in salinity over the top 30 meters. Comparisons to independent data sets show a small but positive impact. The sea surface height (SSH) has also been impacted by implying a reinforcement of TIWs during the El-Niño 2015/16 event. Finally, this study helped us to progress in the understanding of the biases and errors that can degrade the SMOS SSS performance.


2014 ◽  
Vol 1027 ◽  
pp. 146-149
Author(s):  
Min Hui Liu ◽  
Fei Hu Zhang ◽  
Guo Dong Lu

Silicon carbide ceramics with its excellent physical and mechanical properties have become the preferred material for space large diameter mirror. Diamond wheel grinding is the main way of SiC ceramics forming processing. Subsurface cracks is generated due to the high hardness and brittleness of the material after grinding. In order to remove the impact of cracks, poishing processing with very low efficiency is applied, so it is significant to control the depth of silicon carbide ceramic grinding subsurface cracks and shorten the processing cycle.In this paper grinding experiment of SiC ceramic is conducted. The method of cross-section polishing combined with scanning electron microscope observation is used to research grinding subsurface cracks. The depth of broken surface layer and the maximum depth of sub-surface cracks were proposed to evaluate the grinding subsurface cracks. The result show broken surface layer depth and the maximum depth of sub-surface cracks increase with the decreasement of spindle speed, and increasement of feed rate and grinding depth.


2011 ◽  
Vol 91 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Priyantha B. Kulasekera ◽  
Gary W. Parkin

Kulasekera, P. B. and Parkin, G. W. 2011. Influence of the shape of inter-horizon boundary and size of soil tongues on preferential flow under shallow groundwater conditions: A simulation study. Can. J. Soil Sci. 91: 211–221. Detailed studies of the impact of soil tongues at soil horizon interfaces are very important in understanding preferential flow processes through layered soils and in improving the accuracy of models predicting water and solute transport through the vadose zone. The implication of having soil tongues of different shapes and sizes created at the soil horizon interface on solute transport through a layered soil horizon was studied by simulating water and solute transport using the VS2DI model. This 2-D simulation study reconfirmed that soil tongues facilitate preferential flow, and the level of activeness of tongues may depend on the number of soil tongues, their spacing and distribution. Also, the size of the soil tongues (length and diameter at the interface between the soil horizons) and their shape influence the rate of preferential flow. Increasing tongue length consistently resulted in an increase in solute velocity across the entire soil profile regardless of the tongue shape; for example, a soil tongue of 0.25 m length increased solute velocity by about 1.5 times over a soil profile without tongues, but this increase might be different for soil types and groundwater conditions other than those considered in this study. Narrowing of tongues increased solute velocity, whereas increasing the number of tongues in a wider soil profile decreased the solute-front's velocity. As tongue length increased, the area containing solutes at prescribed elapsed times decreased. An implication of this study is that soil horizon tongue shape and spacing reduce pollutant residence times, hence inter-horizon boundary morphology should be considered when modelling transport through the vadose zone. As well, since the solute velocity behaviours of a triangular- and a wider rectangular-shaped tongue were nearly identical, simply measuring solute velocity in the field will reveal little information on the shape of a soil tongue.


Sign in / Sign up

Export Citation Format

Share Document