Radiation-Chemical Reduction of Silver Ions in Polyelectrolyte Matrix‒Carboxymethyl Chitin

2018 ◽  
Vol 60 (6) ◽  
pp. 727-734 ◽  
Author(s):  
V. A. Aleksandrova ◽  
L. N. Shirokova
2020 ◽  
Vol 75 (2) ◽  
pp. 87-91
Author(s):  
A. A. Zharikov ◽  
A. A. Zezin ◽  
E. A. Zezina ◽  
A. I. Emel’yanov ◽  
G. F. Prozorova

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Antonio M. Brito-Silva ◽  
Luiz A. Gómez ◽  
Cid B. de Araújo ◽  
André Galembeck

Poly(vinyl-pyrrolidone) (PVP) stabilized silver nanoparticles with an average particle size ranging from 4.3 to 4.9 nm were synthesized by laser ablation in preformed colloids in methanol, acetone, ethylene glycol, and glycerin. Aqueous colloids obtained using PVP, poly(vinyl-alcohol) (PVA), and sodium citrate as stabilizing agents also lead to a good control over particle size distribution. Silver ions were reduced with sodium borohydride. The smaller average particle size and narrower dispersivity in comparison to previously reported data were ascribed to the relatively small size of the particles formed in the chemical reduction step, laser fluence, and the use of PVP, which was not previously used as the stabilizing agent in “top-down” routes. The surface plasmon resonance band maximum wavelength shifted from 398 nm in methanol to 425 nm in glycerin. This shift must be due to solvent effects since all other variables were the same.


2021 ◽  
Vol 21 (3) ◽  
pp. 1598-1605
Author(s):  
Ngoc Bao Tri Pham ◽  
Vu Khanh Trang Le ◽  
Thi Thu Thao Bui ◽  
Nguyen Gia Linh Phan ◽  
Quoc Vinh Tran ◽  
...  

Ag/SiO2 colloidal nanocomposites (NCs) were prepared through the semi-continuous chemical reduction of silver ions on a silica surface; NaBH4 was used as a primary reducing agent, while carboxymethyl cellulose (CMC) served as a secondary reductant and a stabilizer at low temperature. Silver nanoparticles (AgNPs) of an average diameter of 3.89±0.18 nm were uniformly and densely dispersed on the SiO2 surface, forming 218.6-nm-sized Ag/SiO2 NCs. The zeta potential of the Ag/SiO2 NCs (−92.6 mV) was more negative than that of silica (−24 mV), indicating their high long-term stability. Furthermore, their proposed formation mechanism was confirmed via Fourier transform infrared spectroscopy. Then, the bactericidal effect of the Ag/SiO2 was evaluated based on their minimal inhibitory concentration (MIC) against Ralstonia solanacearum 15 (R. solanacearum 15); it was 62.5 ppm, much lower than that of conventional AgNPs (500 ppm). Therefore, these highly stable Ag/SiO2 colloidal NCs with more effective antibacterial activity than conventional AgNPs are a promising nanopesticide in agriculture.


2021 ◽  
Vol 12 (4) ◽  
pp. 326-343
Author(s):  
A. M. Eremenko ◽  
◽  
I. S. Petryk ◽  
Y. P. Mukha ◽  
N. V. Vityuk ◽  
...  

The aim of this work is a comparative analysis of the biocidal efficiency of Ag nanoparticles (NPs) in the colloidal state, in the structure of films and dispersions of SiO2 and in the composition of textile fabrics, dependent on the method of synthesis, based on literature data and on own researches. Chemical reduction of silver (with borohydrides, hydrogen, hydrazine, etc.) allows one to adjust and control the size and shape of NPs. The shape of the NPs is mostly spherical, what is confirmed by the presence of a band of surface plasmon resonance in absorption spectra and by electron microscopy measurements. To prevent aggregation of NPs obtained by the method of chemical reduction in solution, the optimal ratio of two stabilizers based on surfactants and polymer at their minimum concentration was found, namely NaBH4 as a reductant and polyvinylpyrrolidone + sodium dodecyl sulfate as binary stabilizer of Ag NPs, with bactericidal activity of 99 % and stability for more than 3 years. Chemical reduction of silver ions was carried out also by the amino acid tryptophan (Trp) which has a dual function – a biocompatible reducing agent and stabilizer of silver NPs while maintaining their shape, size and stability for long-term use. Effective methods of photochemical synthesis of Ag NPs have been developed in different ways: by UV irradiation of Ag+ ions in solution in the presence of solid-state photosensitizer SiO2 with adsorbed benzophenone (SiO2/BPh); by UV irradiation of Ag+ ions in solution in the presence of the amino acid tryptophan (Trp); on silica surface when Ag/SiO2 sol-gel films production via irradiation of adsorbed Ag+ ions on SiO2 film (Ag+/SiO2) in the BPh solution. It is shown that when Ag NPs are adsorbed on the surface of highly dispersed SiO2, the logarithm of the reduction of microorganisms reduces and the time of their deactivation increases. A cheap and convenient way to modify of cotton textiles with Ag NPs by soft heat treatment of Ag+/cotton samples with high (90–95 %) efficiency of destruction of bacteria E. coli, K. pneumoniae, E. aerogenes, P. vulgaris, S. aureus, C. albicans, etc., with saving of biocidal activity after 5 cycles of washing has been developed. The dynamics of silver ions release from the surface of NPs in the structure of textile upon their contact with water for 72 hours and the number of irreversibly bound particles have been studied. The electrical resistance of the tissue is proportional to the quantity of NPs. That is NPs in the structure are in different degrees of binding, a certain part of them is retained (adsorbed) irreversibly, saving bactericidal properties after repeated contacts with water. On the basis of literature analysis it is shown that ecologically safe “green synthesis” is a promising way to silver NPs produce with pronounced bactericidal efficiency, which is becoming more common due to the large resource of cheap plant raw materials.


1970 ◽  
Vol 60 (4) ◽  
Author(s):  
Jolanta Pulit ◽  
Marcin Banach ◽  
Renata Szczygłowska ◽  
Mirosław Bryk

The work presents a method of obtaining an aqueous raspberry extract as well as its physicochemical and analytical characteristics. The paper also contains a description of the method of preparation of nanosilver suspensions based on this extract. The raspberry extract served as a source of phenolic compounds which acted as both reducing and stabilizing agents. Suspensions of silver nanoparticles were obtained with the use of chemical reduction method. The silver ions concentration, pH value and temperature of samples incubation were independent variables. The next step of the research was to measure the antifungal activity of the received silver nanoparticles as well as to perform a mycological efficacy resistance analysis of the tested preparations in relation to different concentrations of nanostructured silver. Tests were conducted in compliance with the Eucast guidelines. The results of microbiological study of (the samples') biocidal effect against Cladosporium cladosporoides and Aspergillus niger are described. It was found that using nanosilver suspension at the concentration of 50 ppm inhibited the growth of Cladosporium cladosporoides and Aspergillus niger by 90% and 70%, respectively.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4235
Author(s):  
Alexey A. Zezin ◽  
Alexey A. Zharikov ◽  
Artem I. Emel’yanov ◽  
Alexander S. Pozdnyakov ◽  
Galina F. Prozorova ◽  
...  

Metal–polymer nanocomposite polyvinyltriazole–silver nanoparticles were obtained using one-pot synthesis in irradiated aqueous solutions of 1-vinyl-1,2,4-triazole (VT) and silver ions. Gel permeation chromatography data show that upon radiation initiation, the molecular weight of poly(1-vinyl-1,2,4-triazole) increases with increasing monomer concentration. To study the kinetics of polymerization and the features of the radiation–chemical formation of nanoparticles, UV-Vis spectroscopy was used. TEM images show a relatively small average size of the forming nanoparticles (2–3 nm) and a narrow size distribution, which shows the effective stabilization of nanoparticles by triazole substituents at a molar ratio of VT and silver ions of 25/1. The addition of ethyl alcohol was used to increase the efficiency of synthesis and suppress the crosslinking of macromolecules in solution. The results of the work show that aqueous–alcoholic solutions of 1 wt.% VT can be used to obtain soluble nanocomposite materials. 10 wt.% monomer solutions have prospects for use in the preparation of polymer gels filled with nanoparticles.


2013 ◽  
Vol 17 (10) ◽  
pp. 928-933
Author(s):  
Altuğ Mert Sevim ◽  
Ayşe Selda Keskin ◽  
Ahmet Gül

A one step chemical reduction process was used for the preparation of hydrophilic silver nanoparticles ( AgNP ) using silver nitrate, sodiumborohydride and polyvinylpyrolidone as stabilizer. In the case of hydrophobic silver nanoparticles reduced silver ions were stabilized with cetyl trimethylammonium bromide (CTAB). The resultant nano particles were characterized by absoption spectra and their interactions with cationic cobalt (QCoPz) and neutral magnesium (MgPz) porphyrazines in water and in organic medium were investigated by using UV-vis spectroscopy and zeta potential techniques. It is confirmed that both metalloporphyrazine molecules interact with silver nanoparticles in an effective manner. The possible arrangement of the porphyrazines on the surfaces of the hydrophilic and hydrophobic AgNPs has been also discussed according to obtained spectroscopic results. These well-characterized novel AgNP -metalloporphyrazine composites are expected to be useful in optical and catalytic applications.


Sign in / Sign up

Export Citation Format

Share Document