Modeling Approaches to Hydration Properties of Aqueous Nonelectrolytes at Elevated Temperatures and Pressures

2008 ◽  
Vol 73 (3) ◽  
pp. 322-343 ◽  
Author(s):  
Josef Sedlbauer

Thermodynamic models describing temperature and pressure evolution of Henry's law constant and related properties of hydration of aqueous nonelectrolyte solutes are reviewed. The included models cover a broad range spanning from simple van't Hoff-like equations used in environmental chemistry over the more elaborate empirical or semiempirical temperature correlations favored for engineering purposes to complete equations-of-state for hydration properties originating in the theory of near-critical phenomena and developed for modeling of hydrothermal systems. For aqueous organic solutes, the methods are often coupled with the group additivity approximation, leading to complex tools for predicting the properties of solutions containing organic species. The various models were subjected to tests documenting their expected range of applicability at elevated pressures (for acid gases) or at high temperatures (for hydrocarbons and oxygen-containing organic solutes). New developments in the field are discussed and some future needs are envisioned.

1991 ◽  
Vol 159 (1) ◽  
pp. 473-487 ◽  
Author(s):  
ELIZABETH DAHLHOFF ◽  
GEORGE N. SOMERO

Effects of temperature and hydrostatic pressure were measured on cytosolic malate dehydrogenases (cMDHs) from muscle tissue of a variety of shallow- and deep-living benthic marine invertebrates, including seven species endemic to the deep-sea hydrothermal vents. The apparent Michaelis-Menten constant (Km) of coenzyme (nicotinamide adenine dinucleotide, NADH), used to index temperature and pressure effects, was conserved within a narrow range (approximately 15–25 μmoll−1) at physiological temperatures and pressures for all species. However, at elevated pressures, the Km of NADH rose sharply for cMDHs of shallow species (depths of occurrence >Approximately 500 m), but not for the cMDHs of deep-sea species. Cytosolic MDHs of invertebrates from the deep-sea hydrothermal vents generally were not perturbed by elevated temperatures (15–25°C) at in situ pressures, but cMDHs of cold-adapted deep-sea species were. At a single measurement temperature, the Km of NADH for cMDHs from invertebrates from habitats with well-characterized temperatures was inversely related to maximal sustained body temperature. This correlation was used to predict the maximal sustained body temperatures of vent invertebrates for which maximal habitat and body temperatures are difficult to estimate. Species occurring on the ‘smoker chimneys’, which emit waters with temperatures up to 380°C, are predicted to have sustained body temperatures that are approximately 20–25°C higher than vent species living in cooler vent microhabitats. We conclude that, just as adaptation of enzymes to elevated pressures is important in establishing species’ depth distribution patterns, adaptation of pressure-adapted enzymes to temperature is critical in enabling certain vent species to exploit warm-water microhabitats in the vent environment.


2007 ◽  
Vol 10 (04) ◽  
pp. 367-375 ◽  
Author(s):  
Patrick Michael Collins

Summary Steam-assisted gravity drainage (SAGD) is a robust thermal process that has revolutionized the economic recovery of heavy oil and bitumen from the immense oil-sands deposits in western Canada, which have 1.6 to 2.5 trillion bbl of oil in place. With steam injection, reservoir pressures and temperatures are raised. These elevated pressures and temperatures alter the rock stresses sufficiently to cause shear failure within and beyond the growing steam chamber. The associated increases in porosity, permeability, and water transmissibility accelerate the process. Pressures ahead of the steam chamber are substantially increased, promoting future growth of the steam chamber. A methodology for determining the optimum injection pressure for geomechanical enhancement is presented that allows operators to customize steam pressures to their reservoirs. In response, these geomechanical enhancements of porosity, permeability, and mobility alter the growth pattern of the steam chamber. The stresses in the rock will determine the directionality of the steam chamber growth; these are largely a function of the reservoir depth and tectonic loading. By anticipating the SAGD growth pattern, operators can optimize on the orientation and spacing of their wells. Core tests are essential for the determination of reservoir properties, yet oil sand core disturbance is endemic. Most core results are invalid, given the high core-disturbance results in test specimens. Discussion on the causes and mitigation of core disturbance is presented. Monitoring of the SAGD process is central to understanding where the process has been successful. Methods of monitoring the steam chamber are presented, including the use of satellite radar interferometry. Monitoring is particularly important to ensure caprock integrity because it is paramount that SAGD operations be contained within the reservoir. There are several quarter-billion-dollar SAGD projects in western Canada that are currently in the design stage. It is essential that these designs use a fuller understanding of the SAGD process to optimize well placement and facilities design. Only by including the interaction of SAGD and geomechanics can we achieve a more complete understanding of the process. Introduction Geomechanics examines the engineering behavior of rock formations under existing and imposed stress conditions. SAGD imposes elevated pressures and temperatures on the reservoir, which then has a geomechanical response. Typically, the SAGD process is used in unconsolidated sandstone reservoirs with very heavy oil or bitumen. In-situ viscosities can exceed 5 000 000 mPa•s [mPa•s º cp] under reservoir conditions. These bituminous unconsolidated sandstones, or "oil sands," are unique engineering materials for two reasons. Firstly, the bitumen is essentially a solid under virgin conditions, and secondly, the sands themselves are not loosely packed beach sands. Instead, they have a dense, interlocked structure that developed as a result of deeper burial and elevated temperatures over geological time. In western Canada, the silica pressure dissolution and redeposition over 120 million years developed numerous concave-convex grain contacts (Dusseault 1980a; Touhidi-Baghini 1998) in response to the additional rock overburden and elevated temperatures. As such, these oil sands are at a density far in excess of that expected under current or previous overburden stresses. Furthermore, once oil sands are disturbed, the grain rotations and dislocations preclude any return to their undisturbed state. Oil sands, by definition, have little to no cementation. As such, their strength is entirely dependent upon grain-to-grain contacts, which are considerable in their undisturbed state. These contacts are maintained by the effective confining stress. Any reduction in the effective confining stress will result in a reduction in strength. Because the SAGD process increases the formation fluid pressure, it reduces the effective stresses and weakens the oil sand.


2018 ◽  
Vol 58 (1) ◽  
pp. 112
Author(s):  
Son Ly ◽  
Xiao Yu ◽  
Xinsong Zhang ◽  
Alireza Salmachi

High performance water-based drilling fluid alternatives that meet performance objectives with minimal environmental impact must continually be developed. Drilling fluid performance is dependent on fluid characteristics, and among those most critical are viscosity and filtration. One avenue to improve drilling fluid performance is through enhancement by use of potent, water-soluble natural polymers. Psyllium husk powder is an environmentally friendly natural polymer derived from ground-up surfaces of psyllium seeds (Plantago ovata). When in contact with water, psyllium husk powder forms a gel-like, extraordinarily viscous substance at very low concentrations. It was previously shown that pure psyllium husk is an excellent viscosity and filtration agent for water-based drilling fluid under standard conditions. Psyllium husk can also be used as a clay-extender to enhance viscosity and filtration performance of bentonite mud; however, further laboratory testing of this performance enhancement under elevated temperatures and pressures is required. Extensive laboratory experiments were therefore conducted to test husk performance in bentonite mud under such conditions. An electronic rheometer and a temperature and pressure adjustable API filter press were used to evaluate viscoelastic and filtration mud characteristics respectively. Concentrations of 0.05–0.4% husk with 5% bentonite were tested at 25−120°C under 1500 psi. An optimal husk concentration of 0.1% was determined, increasing bentonite viscosity and yield point by up to 46.9% and 68.1% respectively. Filtrate loss rate and filtration cake thickness were reduced by up to 25.8% and 35.3% respectively. The optimal concentration was useable up to 70°C (~2800 m) before deflocculating was required.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Klaus Brun ◽  
Sarah Simons ◽  
Kelsi Katcher ◽  
Ryan Cater ◽  
Brandon Ridens ◽  
...  

Gas property prediction is necessary for proper design of compressors. Equations of state are utilized to predict the thermo-physical gas properties needed for such calculations. These are semi-empirical models that allow the calculation of thermodynamic properties such as density, enthalpy, and speed of sound of gas mixtures for known pressures and temperature. Currently, there is limited or no data publically available to verify the results of these equation of state calculations for the range of pressures, temperatures, and gas compositions relevant to many oil and gas applications. Especially for isentropic enthalpy head (i.e., the enthalpy rise along constant entropy lines), which is a critical parameter required to accurately design and performance test compressors, limited public domain data are available for equation of state validation. In this paper, a method and test apparatus is described to measure compression enthalpy rise directly. In this apparatus, a test gas is compressed using a fast acting piston inside an adiabatic autoclave. Test results are then corrected using calibration efficiencies from a known reference gas compression process at a similar Reynolds number. The paper describes the test apparatus, calibration, measurement methodology, and test results for one complex hydrocarbon gas composition at elevated temperatures and pressures. An uncertainty analysis of the new measurement method is also presented and results are compared to several equations of state. The results show that commonly used equations of state significantly underpredicted the compression enthalpy rise for the test gas case by more than 6%.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
M. D. Barringer ◽  
K. A. Thole ◽  
M. D. Polanka

The design and development of current and future gas turbine engines for aircraft propulsion have focused on operating the high pressure turbine at increasingly elevated temperatures and pressures. The drive toward thermal operating conditions near theoretical stoichiometric limits as well as increasingly stringent requirements on reducing harmful emissions both equate to the temperature profiles exiting combustors and entering turbines becoming less peaked than in the past. This drive has placed emphasis on determining how different types of inlet temperature and pressure profiles affect the first stage airfoil endwalls. The goal of the current study was to investigate how different radial profiles of temperature and pressure affect the heat transfer along the vane endwall in a high pressure turbine. Testing was performed in the Turbine Research Facility located at the Air Force Research Laboratory using an inlet profile generator. Results indicate that the convection heat transfer coefficients are influenced by both the inlet pressure profile shape and the location along the endwall. The heat transfer driving temperature for inlet profiles that are nonuniform in temperature is also discussed.


2021 ◽  
Author(s):  
You Xu ◽  
Jing Huang

The pressure-temperature phase diagram is significant to understanding the physics of biomolecules. In this study we evaluated the transferability of CHARMM36m (C36m) protein force field (FF) in varied pressures using ubiquitin as a model protein compared with NMR data. We demonstrate that C36m FF combining with the LJ-PME method is suitable for simulations in a wide range of temperature and pressure.


2005 ◽  
Vol 2 (5) ◽  
pp. 1515-1615 ◽  
Author(s):  
J. M. Dick ◽  
D. E. LaRowe ◽  
H. C. Helgeson

Abstract. Thermodynamic calculation of the chemical speciation of proteins and the limits of protein metastability affords a quantitative understanding of the biogeochemical constraints on the distribution of proteins within and among different organisms and chemical environments. These calculations depend on accurate determination of the ionization states and standard molal Gibbs free energies of proteins as a function of temperature and pressure, which are not generally available. Hence, to aid predictions of the standard molal thermodynamic properties of ionized proteins as a function of temperature and pressure, calculated values are given below of the standard molal thermodynamic properties at 25°C and 1 bar and the revised Helgeson-Kirkham-Flowers equations of state parameters of the structural groups comprising amino acids, polypeptides and unfolded proteins. Group additivity and correlation algorithms were used to calculate contributions by ionized and neutral sidechain and backbone groups to the standard molal Gibbs free energy (Δ G°), enthalpy (Δ H°), entropy (S°), isobaric heat capacity (C°P), volume (V°) and isothermal compressibility (κ°T) of multiple reference model compounds. Experimental values of C°P, V° and κ°T at high temperature were taken from the recent literature, which ensures an internally consistent revision of the thermodynamic properties and equations of state parameters of the sidechain and backbone groups of proteins, as well as organic groups. As a result, Δ G°, Δ H°, S° C°P, V° and κ°T of unfolded proteins in any ionization state can be calculated up to T~-300°C and P~-5000 bars. In addition, the ionization states of unfolded proteins as a function of not only pH, but also temperature and pressure can be calculated by taking account of the degree of ionization of the sidechain and backbone groups present in the sequence. Calculations of this kind represent a first step in the prediction of chemical affinities of many biogeochemical reactions, as well as of the relative stabilities of proteins as a function of temperature, pressure, composition and intra- and extracellular chemical potentials of O2 and H2, NH3, H2PO4 and CO2.


Sign in / Sign up

Export Citation Format

Share Document