scholarly journals AB0136 THE SUSTAINED POSITIVITY FOR ANTI-DSDNA ANTIBODIES FOSTERS THE ESTABLISHMENT OF AN ATHEROTHROMBOTIC STATUS IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1368.2-1369
Author(s):  
A. M. Patiño-Trives ◽  
M. A. Aguirre ◽  
C. Pérez Sánchez ◽  
P. S. Laura ◽  
M. Luque-Tévar ◽  
...  

Background:Objectives:1. This study, developed within the Innovative Medicines Initiative Joint Undertaking project PRECISESADS framework, aimed to identify specific molecular profiles involved in the enhanced CV-risk present in SLE patients and to analyze the relevance of the sustained positivity for anti-dsDNA on the establishment of their atherothrombotic status.Methods:One hundred and twenty-four SLE consecutive patients (not including patients with associated antiphospholipid syndrome), belonging to the PRECISESADS project, were evaluated for the presence of CVD and its association with positivity for anti-dsDNA antibodies. A second cohort of 62 SLE patients was included, of which endothelial dysfunction, lipid profile, the presence of atheroma plaques (identified by a pathologic increase in the carotid intimae media thickness -CIMT-), and the frequencies of anti-dsDNA positivity for 7 years, were evaluated. Serum inflammatory and oxidative stress biomolecules, and NETosis-derived bioproducts were further evaluated by multiplex assay and specific commercial kits, respectively. Besides, miRNnomes were identified using next-generation sequencing. Clinical significance of the biomolecules analyzed was explored by correlation/association studies with immunological and CV-risk features.Results:A significant relationship among the incidence of CVD (i.e. thrombosis or cardiac involvement) and the positivity for anti-dsDNA antibodies was recognized in the first SLE cohort. Accordingly, in the second SLE cohort, significantly impaired micro-vascular endothelial function (identified by reduction of hyperemia post-occlusion area), increased atherogenic index and pathologic increase in the CIMT were assessed in patients positive for anti-dsDNA in relation to anti-dsDNA negative patients. Around a 65% of SLE patients displayed a sustained positivity for anti-dsDNA antibodies for more than 7 years. These patients showed a distinctive and specific molecular profile compared with patients that had remained negative for anti-dsDNA, including increased inflammatory profile (IL1B, IL2, IL6, IL17, EOTAXIN, FGF, GMCSF, IFNγ, IP10, RANTES, TNF), enhanced oxidative status (lipoperoxides), and higher NETosis (nucleosomes, elastase). Levels of those biomolecules were closely interconnected and associated to their regulatory miRNAs, which accordingly exhibited differential expression in SLE anti-dsDNA(+)vsanti-dsDNA(-) patients. Finally, the frequency for positivity of anti-dsDNA significantly correlated both with markers of endothelial dysfunction and with the presence of atheroma plaques in SLE patients, pointing at the direct involvement of anti-dsDNA-Abs in the development of these processes.Conclusion:1. Positivity for anti-dsDNA antibodies confers a specific molecular profile linked to an enhanced CV-risk in SLE patients. 2. Moreover, the sustained positivity for anti-dsDNA antibodies fosters the establishment of an atherothrombotic status in these autoimmune patients.Acknowledgments:Supported by the EU/EFPIA –IMI-JU PRECISESADS (n° 115565) and ISCIII (PI18/0837 and RIER RD16/0012/0015), Co-funded with FEDER.Disclosure of Interests:Alejandra M. Patiño-Trives: None declared, Maria A Aguirre: None declared, Carlos Pérez Sánchez: None declared, Pérez Sánchez Laura: None declared, María Luque-Tévar: None declared, Iván Arias de la Rosa: None declared, Rafaela Ortega Castro: None declared, Maria del Carmen Abalos-Aguilera: None declared, Mario Espinosa: None declared, Pedro Seguí Azpilcueta: None declared, Jacques-Olivier Pers: None declared, Nuria Barbarroja Puerto Grant/research support from: ROCHE and Pfizer., Speakers bureau: ROCHE and Celgene., Marta Alarcon-Riquelme: None declared, Eduardo Collantes Estevez Grant/research support from: ROCHE and Pfizer, Speakers bureau: ROCHE, Lilly, Bristol and Celgene, Chary Lopez-Pedrera Grant/research support from: ROCHE and Pfizer.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 823.2-824
Author(s):  
I. C. Aranda-Valera ◽  
A. M. Patiño-Trives ◽  
R. M. Rosa ◽  
M. A. Aguirre ◽  
P. S. Laura ◽  
...  

Background:Objectives:1. This study, developed within the Innovative Medicines Initiative Joint Undertaking project PRECISESADS framework, aimed at identify specific inflammatory and oxidative stress determinants involved in the enhanced CV-risk present in SLE patients and to analyze the relevance of the sustained positivity for anti-dsDNA on the establishment of their atherothrombotic status.Methods:One hundred and twenty-four SLE consecutive patients (not including patients with associated antiphospholipid syndrome), belonging to the PRECISESADS project, were evaluated for the presence of CVD and its association with positivity for anti-dsDNA antibodies. A second cohort of 62 SLE patients was included, of which endothelial dysfunction, lipid profile, the presence of atheroma plaques (identified by a pathologic increase in the carotid intimae media thickness -CIMT-), and the frequencies of anti-dsDNA positivity for 7 years, were evaluated. Serum inflammatory and oxidative stress biomolecules, and NETosis-derived bioproducts were further evaluated by multiplex assay and specific commercial kits, respectively. Besides, miRNnomes were identified using next-generation sequencing. Clinical significance of the biomolecules analyzed was explored by correlation/association studies with immunological and CV-risk features.Results:A significant relationship among the incidence of CVD (i.e. thrombosis or cardiac involvement) and the positivity for anti-dsDNA antibodies was recognized in the first SLE cohort. Accordingly, in the second SLE cohort, significantly impaired micro-vascular endothelial function (identified by reduction of hyperemia post-occlusion area), increased atherogenic index and pathologic increase in the CIMT were assessed in patients positive for anti-dsDNA in relation to anti-dsDNA negative patients. Around a 65% of SLE patients displayed a sustained positivity for anti-dsDNA antibodies for more than 7 years. These patients showed a distinctive and specific molecular profile compared with patients that had remained negative for anti-dsDNA, including increased inflammatory profile (IL1B, IL2, IL6, IL17, EOTAXIN, FGF, GMCSF, IFNγ, IP10, RANTES, TNF), enhanced oxidative status (lipoperoxides), and higher NETosis (nucleosomes, elastase). Levels of those biomolecules were closely interconnected and associated to their regulatory miRNAs, which accordingly exhibited differential expression in SLE anti-dsDNA(+)vsanti-dsDNA(-) patients. Finally, the frequency for positivity of anti-dsDNA significantly correlated both with markers of endothelial dysfunction and with the presence of atheroma plaques in SLE patients, pointing at the direct involvement of anti-dsDNA-Abs in the development of these processes.Conclusion:1. Positivity for anti-dsDNA antibodies confers a specific inflammatory/oxidative profile linked to an enhanced CV-risk in SLE patients. 2. Moreover, the sustained positivity for anti-dsDNA antibodies fosters the establishment of an atherothrombotic status in these autoimmune patients.Acknowledgments:Supported by the EU/EFPIA –IMI-JU PRECISESADS (n° 115565) and ISCIII (PI18/0837 and RIER RD16/0012/0015), Co-funded with FEDER.Disclosure of Interests:Inmaculada Concepcion Aranda-Valera: None declared, Alejandra M. Patiño-Trives: None declared, Roldán Molina Rosa: None declared, Maria A Aguirre: None declared, Pérez Sánchez Laura: None declared, Carlos Pérez Sánchez: None declared, María Luque-Tévar: None declared, Iván Arias de la Rosa: None declared, Maria del Carmen Abalos-Aguilera: None declared, Desiree Ruíz-Vilchez: None declared, Mario Espinosa: None declared, Nuria Barbarroja Puerto Grant/research support from: ROCHE and Pfizer., Speakers bureau: ROCHE and Celgene., Eduardo Collantes-Estévez Grant/research support from: ROCHE and Pfizer., Speakers bureau: ROCHE, Lilly, Bristol and Celgene., Chary Lopez-Pedrera Grant/research support from: ROCHE and Pfizer.


Author(s):  
Alejandra María Patiño-Trives ◽  
Carlos Pérez-Sánchez ◽  
Laura Pérez-Sánchez ◽  
María Luque-Tévar ◽  
M. Carmen Ábalos-Aguilera ◽  
...  

Objective: Systemic lupus erythematosus (SLE) is associated to boosted atherosclerosis development and a higher cardiovascular disease risk. This study aimed to delineate the role of anti-double stranded DNA (anti-dsDNA) antibodies on the molecular profile and the activity of immune and vascular cells, as well as on their enhanced cardiovascular risk. Approach and Results: Eighty SLE patients were included. Extensive clinical/analytical evaluation was performed, including cardiovascular disease parameters (endothelial function, proatherogenic dyslipidemia, and carotid intima-media thickness). Gene and protein expression profiles were evaluated in monocytes from patients diagnosed positive or negative for anti-dsDNA antibodies by using NanoString and cytokine arrays, respectively. NETosis and circulating inflammatory profile was assessed in both neutrophils and plasma. Positivity and persistence of anti-dsDNA antibodies in SLE patients were associated to endothelial dysfunction, proatherogenic dyslipidemia, and accelerated atherosclerosis. In parallel, anti-dsDNA antibodies were linked to the aberrant activation of innate immune cells, so that anti-dsDNA(+) SLE monocytes showed distinctive gene and protein expression/activity profiles, and neutrophils were more prone to suffer NETosis in comparison with anti-dsDNA(−) patients. Anti-dsDNA(+) patients further displayed altered levels of numerous circulating mediators related to inflammation, NETosis, and cardiovascular risk. In vitro, Ig-dsDNA promoted NETosis on neutrophils, apoptosis on monocytes, modulated the expression of inflammation and thrombosis-related molecules, and induced endothelial activation, at least partially, by FcR (Fc receptor)-binding mechanisms. Conclusions: Anti-dsDNA antibodies increase the cardiovascular risk of SLE patients by altering key molecular processes that drive a distinctive and coordinated immune and vascular activation, representing a potential tool in the management of this comorbidity.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 230.2-231
Author(s):  
A. Pappalardo ◽  
E. Wojciechowski ◽  
I. Odriozola ◽  
I. Douchet ◽  
N. Merillon ◽  
...  

Background:Neutrophils have been described as potent antigen-presenting cells able to activate T cells by MHC/TCR interaction and costimulatory molecules in tumor immunity. However, little is known about the direct interaction between neutrophils and CD4 T cells with respect to systemic lupus erythematosus (SLE). We have previously shown that OX40L expressed by monocytes from SLE patients promote the differentiation of naïve and memory cells into IL21 secreting T cells that are able to help B cells1,2.Objectives:In this study, we investigate OX40L expression on neutrophils from SLE patients and contribution of these OX40L+neutrophils in SLE pathogenesis to modulation of the B cell helper role of CD4 T cells.Methods:Surface expression of co-stimulatory molecules (OX40L, ICOSL, GITRL, 4-1BBL) on neutrophils from SLE patients and healthy donors (HD) was measured by flow cytometry (FC). Neutrophils from HD were stimulated with TLR7 or TLR8 agonists and IFNα after 5 hours of culture, OX40L expression was measured by FC and Western Blotting. CD4 T cells were cultured with the stimulated neutrophils for 3 days. At the end of the co-culture, percentages of IL21-expressing T follicular (Tfh) and peripheral helper (Tph) cells measured by FC. These generated T cells were also cultured in the presence of memory B cells. After 5 days of co-culture, plasmablast generation and Ig levels were assessed by FC and ELISA, respectively. Inhibition of OX40-OX40L interaction in vitro was achieved using ISB 830, a novel anti-OX40 mAb currently used in clinical trials.Results:Among the co-stimulatory molecules tested, percentages of OX40L+neutrophils in SLE (n=54) were increased compared to HD (n=25)(mean + SD: HD = 1,34%±1.62 vs SLE = 4,53%±8.1; p=0.29). OX40L expression positively correlated with SLE disease activity score (SLEDAI) (p = 0,04; r = 0,31) and with anti-DNA antibodies (p= 0,04, r = 0,33). Of note, the percentage of OX40L+neutrophils was higher in anti-sm-RNP+patients (n=16, mean= 9%±9.8), compared to anti-sm-RNP-patients (n=27, mean = 1,4%±2.5; p = 0,02). The percentage of OX40L+neutrophils was higher in patients with class III or IV lupus nephritis, and inflammatory infiltrate within the kidney biopsy disclosed OX40L+neutrophils, in close contact with T cells. Neutrophils from HD express OX40L with TLR8 agonist, or IFNα priming followed by TLR7 agonist. When memory CD4 T cells were cultured in the presence of TLR8-stimulated neutrophils, the proportion of IL21-expressing Tfh (CXCR5+PD1+) and Tph (CXCR5-PD1hi) were increased, compared to culture with unstimulated neutrophils. This process was dependent on OX40-OX40L interactions, since in vitro treatment with the anti-OX40 blocking antibody ISB 830, inhibited the differentiation of memory T cells into Tfh and Tph. Both generated Tfh and Tph were able to promote the differentiation of memory B cells into Ig-secreting plasmablasts.Conclusion:Our results disclose an unprecedented phenomenon where cross-talk between TLR7/8-activated neutrophils and CD4 lymphocytes operates through OX40L-OX40 costimulation, and neutrophils promote the differentiation of pro-inflammatory Tfh and Tph, as well as IL21 production. Therefore, OX40L/OX40 should be considered as a potentially therapeutic axis in SLE patients.References:[1]Jacquemin et al. Immunity 2015;[2]Jacquemin et al. JCI Insight 2018Disclosure of Interests:Angela Pappalardo Grant/research support from: Ichnos Sciences, Elodie Wojciechowski: None declared, Itsaso Odriozola: None declared, Isabelle Douchet: None declared, Nathalie Merillon: None declared, Andrea Boizard-Moracchini: None declared, Pierre Duffau: None declared, Estibaliz Lazaro: None declared, Marie-Agnes Doucey Employee of: Ichnos Sciences, Lamine Mbow Employee of: Ichnos Sciences, Christophe Richez Consultant of: Abbvie, Amgen, Mylan, Pfizer, Sandoz and UCB., Patrick Blanco Grant/research support from: Ichnos Sciences


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 221.1-222
Author(s):  
E. Eliopoulos ◽  
G. Goulielmos ◽  
M. Matalliotakis ◽  
D. Vlachakis ◽  
T. Niewold ◽  
...  

Background:Gene association studies and genome wide association studies (GWAS) have played a primary role in depicting genetic contributions to systemic lupus erythematosus (SLE) development, while accommodating the exonic polymorphisms on the protein structure level, when available, enhances our understanding of protein function modification or depletion. Linking human genetics with therapeutic targets requires the biological function of the causal gene and variant to be known.Objectives:To investigate recently identified SLE-associated functional gene polymorphisms, such asPARP1,ITGAM, TNFAIP3, NCF1, PON1, IFIH1, SH2B3andTYK2[1-4] by correlation to protein structure and function.Methods:Three-dimensional (3D) homology modeling and molecular mechanics/dynamics studies were applied for the localization of the polymorphisms under study on the respective proteins. The mutants were constructed using molecular modeling with the program Maestro (Schrodinger, LLC), which was also used to analyze the conformational changes caused by the mutation. All figures depicting 3D models were created using the molecular graphics program PyMOL V.2.2 [5].Results:Modeling revealed that rs1136410 SNP encodes the less common polymorphism Val762Ala onPARP1that reduces enzymatic activity of Poly(ADP-ribose) polymerase 1 (Figure 1),ITGAMpolymorphism rs1143679 (Arg77His) on Integrin alpha M, component of the macrophage-1 antigen complex affects protein surface recognition,TNFAIP3rs2230926 polymorphism encodes Cys instead of Phe at residue 127 of the ubiquitin editing A20 protein, while rs201802880 polymorphism of the neutrophil cytosolic factor 1 (NCF1) gene modifies the function of the cytosolic subunit of neutrophil NADPH oxidase with the mutation Arg90His.PON1is involved in the oxidative stress process that cause tissue damage observed in SLE and anti-phospholipid syndrome (APS). ThePON1Gln192Arg mutation (rs662 SNP) affects shape and recognition of the ligand recognition site as part of the evolutionary process, whileIFIH1(rs35667974) helicase C domain1 mutant I923V is located on an essential RNA beta loop interacting directly with the nucleic acid (Figure 2). Finally, the rs3184504 SNP ofSH2B3gene generates mutant Arg262Trp on SH2 adapter protein 3, acting as a signaling pathway involved in autoimmune disorders, while inTYK2 gene, one of the Janus kinases, the rs35018800 producing mutant Ala928Val modifies the ADP binding site.Figure 1.Details of the Val762 interaction where V762A mutation occurs in PARP1protein.Figure 2.Nucleic acid interacting IFIH1 helicase beta-loop where I923V mutation occurs (in purple).Conclusion:Based on several examples, we have tried to define a rational link from SLE-associated gene polymorphisms to structure and to modified function, including metagenomic analysis of SNPs, protein crystallography, protein molecular modeling, molecular mechanics and dynamics. Locating, shaping and understanding the target protein interaction interface plays a decisive role in most cases and provides clues for further pharmacological or medical actions [6].References:[1]Hur JW et al (2006). Rheumatology 45:711-7[2]Maiti AK et al (2014). Hum Mol Genet 23:4161-76[3]Shimane K et al (2010). Arthritis Rheum. 62:574-9[4]Linge P et al (2019). Ann Rheum Dis. 2019 Nov 8. pii: annrheumdis-2019-215820[5]Schrödinger LLC: The PyMOL Molecular Graphics System 2016 version 2.2. Available from: pymol.org/2/support.html[6]Plenge RM et al (2013). Nat Rev Drug Discov 12:581–94Disclosure of Interests:None declared


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 343.2-343
Author(s):  
H. Hao ◽  
S. Nakayamada ◽  
Y. Kaoru ◽  
N. Ohkubo ◽  
S. Iwata ◽  
...  

Background:Systemic lupus erythematosus (SLE) is a complex polygenic autoimmune disease characterized by immune-system aberrations. Among several types of immune cells, T follicular helper (Tfh) cells promote autoantibody production, whereas T follicular regulatory (Tfr) cells suppress Tfh-mediated antibody responses.(1)Objectives:To identify the characteristics of Tfr cells and to elucidate the mechanisms of conversion of Tfh cells to Tfr cells, we probed the phenotype of T helper cells in patients with SLE and underlying epigenetic modifications by cytokine-induced signal transducer and activators of transcription (STAT) family factors.Methods:Peripheral blood mononuclear cells from SLE patients (n=44) and healthy donors (HD; n=26) were analyzed by flow cytometry. Memory Tfh cells were sorted and cultured under stimulation with T cell receptor and various cytokines. Expression of characteristic markers and phosphorylation of STATs (p-STATs) were analyzed by flow cytometry and quantitation PCR. Histone modifications were evaluated by chromatin immunoprecipitation.Results:The proportion of CXCR5+FoxP3+Tfr cells in CD4+T cells tended to increase (2.1% vs 1.7%, p=0.17); however, that of CD4+CD45RA-FoxP3hiactivated Tfr cells in Tfr cells was decreased (4.8% vs 7.1%, p<0.05), while CD4+CD45RA-FoxP3lownon-suppressive Tfr cells was increased (50.1% vs 38.2%, p<0.01) in SLE compared to HD. The percentage of PD-1hiactivated Tfh cells was significantly higher in SLE compared to HD (15.7% vs 5.9%, p<0.01). Furthermore, active patients had a higher ratio of activated Tfh/Tfr cells compared to inactive patients. In vitro study showed that IL-2, but not other cytokines such as TGF-β1, IL-12, IL-27, and IL-35, induced the conversion of memory Tfh cells to functional Tfr cells characterized by CXCR5+Bcl6+Foxp3hipSTAT3+pSTAT5+cells. The loci ofFOXP3at STAT binding sites were marked by bivalent histone modifications. After IL-2 stimulation, STAT5 directly bound on FOXP3 gene loci accompanied by suppressing H3K27me3. Finally, we found that serum level of IL-2 was decreased in SLE and that stimulation with IL-2 suppressed the generation of CD38+CD27+B cells by ex vivo coculture assay using Tfh cells and B cells isolated from human blood.Conclusion:Our findings indicated that the regulatory function of Tfr cells is impaired due to the low ability of IL-2 production and that IL-2 restores the function of Tfr cells through conversion of Tfh cells to Tfr cells in SLE. Thus, the reinstatement of the balance between Tfh and Tfr cells will provide important therapeutic approaches for SLE.References:[1]Deng J, Wei Y, Fonseca VR, et al. T follicular helper cells and T follicular regulatory cells in rheumatic diseases. Nat Rev Rheumatol. 2019; 15 (8): 475-90.Disclosure of Interests: :He Hao: None declared, Shingo Nakayamada Grant/research support from: Mitsubishi-Tanabe, Takeda, Novartis and MSD, Speakers bureau: Bristol-Myers, Sanofi, Abbvie, Eisai, Eli Lilly, Chugai, Asahi-kasei and Pfizer, Yamagata Kaoru: None declared, Naoaki Ohkubo: None declared, Shigeru Iwata: None declared, Yoshiya Tanaka Grant/research support from: Asahi-kasei, Astellas, Mitsubishi-Tanabe, Chugai, Takeda, Sanofi, Bristol-Myers, UCB, Daiichi-Sankyo, Eisai, Pfizer, and Ono, Consultant of: Abbvie, Astellas, Bristol-Myers Squibb, Eli Lilly, Pfizer, Speakers bureau: Daiichi-Sankyo, Astellas, Chugai, Eli Lilly, Pfizer, AbbVie, YL Biologics, Bristol-Myers, Takeda, Mitsubishi-Tanabe, Novartis, Eisai, Janssen, Sanofi, UCB, and Teijin


Sign in / Sign up

Export Citation Format

Share Document