scholarly journals POS0736 IDENTIFICATION OF MOLECULAR PHENOTYPES AND IMMUNE CELL INFILTRATION IN SYSTEMIC LUPUS ERYTHEMATOSUS PATIENTS ACCORDING TO LONGITUDINAL GENE EXPRESSION

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 619.1-619
Author(s):  
S. Song ◽  
S. X. Zhang ◽  
J. Qiao ◽  
R. Zhao ◽  
J. Shi ◽  
...  

Background:Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with highly heterogeneous clinical presentation characterized by disease unpredictable flares and multi-systemic involvement1 2. This clinical heterogeneity calls for design a molecular stratification to improve clinical trial design and formulate personalization treatment therapies.Objectives:This research was conducted to develop a reliable method to stratify SLE patients combined gene expression information and disease status.Methods:The mRNA expression profile of GSE138458 (contained 307 patients and 23 controls) and GSE49454 (contained 111 patients and 16 controls) were downloaded from the publicly GEO databases. After background adjustment, batch correction, and other pre-procession, obtaining a big gene matrix to identify the differentially expressed genes (DEGs) in SLE compared with healthy controls, which were screened by P value < 0.01. SLE subtypes were identified by non-negative matrix factorization (NMF) based on DEGs. Acquired signature genes in different SLE subtypes were conducted to process pathway enrichment analysis in Metascape. SLEDAI score and immune cell infiltration was also performed between subtypes by software package R (version 4.0.3).Results:Total 1202 DEGs were imputed to NMF unsupervised machine learning method. Patients with SLE were stratified into two subsets based on 184 signature genes derived from obtained DEGs(Fig.1A, 1B). GO and KEGG enrichment analysis showed that signature genes were mainly involved in negative regulation of innate immune response, toll-like receptor signaling pathway, regulation of immune effector process and so on(Fig.1C). Patients in Sub1 group had severe disease activity measures compared with those in Sub2(Fig.1D). SLEDAI scores from GSE49454 dataset were also higher in Sub1 compare with Sub2(Fig.1E). Further, immune cell infiltration results revealed an insufficient of regulatory T cell, CD8 T cells and naive CD4 T cells in Sub1 and neutrophils cells in Sub2(P<0.05)(Fig.1F).Conclusion:Our findings indicate that patients with SLE could be stratified into 2 subtypes which had different lymphocyte status and closely related to disease activity. This phenotyping may help us understand the etiology of the disease, inform patient in the design of clinical trials and guide treatment decision.References:[1]Dorner T, Furie R. Novel paradigms in systemic lupus erythematosus. Lancet 2019;393(10188):2344-58. doi: 10.1016/S0140-6736(19)30546-X [published Online First: 2019/06/11].[2]Fanouriakis A, Tziolos N, Bertsias G, et al. Update οn the diagnosis and management of systemic lupus erythematosus. Annals of the rheumatic diseases 2021;80(1):14-25. doi: 10.1136/annrheumdis-2020-218272 [published Online First: 2020/10/15].Acknowledgements:This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xingwang Zhao ◽  
Longlong Zhang ◽  
Juan Wang ◽  
Min Zhang ◽  
Zhiqiang Song ◽  
...  

Abstract Background Systemic lupus erythematosus (SLE) is a multisystemic, chronic inflammatory disease characterized by destructive systemic organ involvement, which could cause the decreased functional capacity, increased morbidity and mortality. Previous studies show that SLE is characterized by autoimmune, inflammatory processes, and tissue destruction. Some seriously-ill patients could develop into lupus nephritis. However, the cause and underlying molecular events of SLE needs to be further resolved. Methods The expression profiles of GSE144390, GSE4588, GSE50772 and GSE81622 were downloaded from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs) between SLE and healthy samples. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of DEGs were performed by metascape etc. online analyses. The protein–protein interaction (PPI) networks of the DEGs were constructed by GENEMANIA software. We performed Gene Set Enrichment Analysis (GSEA) to further understand the functions of the hub gene, Weighted gene co‐expression network analysis (WGCNA) would be utilized to build a gene co‐expression network, and the most significant module and hub genes was identified. CIBERSORT tools have facilitated the analysis of immune cell infiltration patterns of diseases. The receiver operating characteristic (ROC) analyses were conducted to explore the value of DEGs for SLE diagnosis. Results In total, 6 DEGs (IFI27, IFI44, IFI44L, IFI6, EPSTI1 and OAS1) were screened, Biological functions analysis identified key related pathways, gene modules and co‐expression networks in SLE. IFI27 may be closely correlated with the occurrence of SLE. We found that an increased infiltration of moncytes, while NK cells resting infiltrated less may be related to the occurrence of SLE. Conclusion IFI27 may be closely related pathogenesis of SLE, and represents a new candidate molecular marker of the occurrence and progression of SLE. Moreover immune cell infiltration plays important role in the progession of SLE.


Epigenomics ◽  
2021 ◽  
Author(s):  
Zhenghao He ◽  
Shihang Zhou ◽  
Ming Yang ◽  
Zhidan Zhao ◽  
Yang Mei ◽  
...  

Aim: To explore potential abnormal epigenetic modifications and immune-cell infiltration in tissues from systemic lupus erythematosus (SLE) patients. Materials & methods: To utilize bioinformatics analysis and ‘wet lab' methods to identify and verify differentially expressed genes in multiple targeted organs in SLE. Results: Seven key genes, IFI44, IFI44L, IFIT1, IFIT3, PLSCR1, RSAD2 and OAS2, which are regulated by epigenetics and may be involved in the pathogenesis of SLE, are identified by combined long noncoding RNA–miRNA–mRNA network analysis and DNA methylation analysis. The results of quantitative reverse transcription PCR, immunohistochemistry and DNA methylation analysis confirmed the potential of these genes as biomarkers. Conclusion: This study reveals the potential mechanisms in SLE from epigenetic modifications and immune-cell infiltration, providing diagnostic biomarkers and therapeutic targets for SLE.


2015 ◽  
Vol 308 (10) ◽  
pp. F1146-F1154 ◽  
Author(s):  
Tang-Dong Liao ◽  
Pablo Nakagawa ◽  
Branislava Janic ◽  
Martin D'Ambrosio ◽  
Morel E. Worou ◽  
...  

Systemic lupus erythematosus is an autoimmune disease characterized by the development of auto antibodies against a variety of self-antigens and deposition of immune complexes that lead to inflammation, fibrosis, and end-organ damage. Up to 60% of lupus patients develop nephritis and renal dysfunction leading to kidney failure. N-acetyl-seryl-aspartyl-lysyl-proline, i.e., Ac-SDKP, is a natural tetrapeptide that in hypertension prevents inflammation and fibrosis in heart, kidney, and vasculature. In experimental autoimmune myocarditis, Ac-SDKP prevents cardiac dysfunction by decreasing innate and adaptive immunity. It has also been reported that Ac-SDKP ameliorates lupus nephritis in mice. We hypothesize that Ac-SDKP prevents lupus nephritis in mice by decreasing complement C5-9, proinflammatory cytokines, and immune cell infiltration. Lupus mice treated with Ac-SDKP for 20 wk had significantly lower renal levels of macrophage and T cell infiltration and proinflammatory chemokine/cytokines. In addition, our data demonstrate for the first time that in lupus mouse Ac-SDKP prevented the increase in complement C5-9, RANTES, MCP-5, and ICAM-1 kidney expression and it prevented the decline of glomerular filtration rate. Ac-SDKP-treated lupus mice had a significant improvement in renal function and lower levels of glomerular damage. Ac-SDKP had no effect on the production of autoantibodies. The protective Ac-SDKP effect is most likely achieved by targeting the expression of proinflammatory chemokines/cytokines, ICAM-1, and immune cell infiltration in the kidney, either directly or via C5-9 proinflammatory arm of complement system.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1365.2-1365
Author(s):  
X. Fan ◽  
D. Guo ◽  
C. T. Ng ◽  
A. Law ◽  
Z. Y. Poon ◽  
...  

Background:Patients with systemic lupus erythematosus (SLE) suffer from severe morbidity and mortality1-4, either from the disease itself or from side effects of immunosuppression5. Discovery of novel effective therapies with less toxicity is an urgent need.Objectives:The aim of this study is to elucidate the therapeutic potential and working mechanism of cytokine CXCL5 in lupus mice.Methods:Treatment with CXCL5, bone marrow (BM)-MSCs, standard of care (SOC) with combination of methylprednisolone and cyclophosphamide was given to 16-week-old Faslprmice. Mice were monitored for 10 weeks. Splenic immune cell subsets were measured by flow cytometry. Circulating cytokine and immunoglobulin were detected by Luminex technology. Renal function was evaluated by urinary spot albumin creatinine ratio. In situ renal immune cell infiltration and complement 3 deposition were detected by Haematoxylin and Eosin (H&E) staining and immunohistochemistry.Results:CXCL5 demonstrated consistent and potent immunosuppressive capacity in suppressing SLE with reduced autoantibody secretion, lymphoproliferation and preserved kidney function. With further exploration, we proved that CXCL5 reduced the proliferation of helper T cells (TH1 and TH2) in thein vitrofunctional assay. When we administrated CXCL5 to lupus mice, it promoted the proliferation of regulatory T cells and reduced the proliferation of TH17 cells, macrophages and neutrophils. Multiple proinflammatory cytokines including IL-2, IL-6, IL-12, IL-17A, KC/CXCL1, MIP-1β/CCL4 and TNF-α were also reduced. When combined with SOC, CXCL5 boosted its therapeutic effect and reduced the relevant indices of disease activity. When we correlated the effect of four different treatment groups (CXCL5, BM-MSCs, SOC, and CXCL5 plus SOC) on mice survival and target cell changes, we found that TH17 cells were the key effector cells involved in the pathogenesis of SLE.Conclusion:These findings demonstrated that CXCL5 dampens inflammation in the pre-clinical model of systemic lupus erythematosus via the orchestral effect of regulating neutrophil trafficking and suppressing helper T cell-mediated immune response. Administrating exogenous CXCL5 might be an attractive option to treat patients with lupus.References:[1]Ji S, Guo Q, Han Y, Tan G, Luo Y, Zeng F. Mesenchymal stem cell transplantation inhibits abnormal activation of Akt/GSK3beta signaling pathway in T cells from systemic lupus erythematosus mice.Cell Physiol Biochem.2012;29(5-6):705-712.[2]Peng SL. Altered T and B lymphocyte signaling pathways in lupus.Autoimmun Rev.2009;8(3):179-183.[3]Ferucci ED, Johnston JM, Gaddy JR, et al. Prevalence and incidence of systemic lupus erythematosus in a population-based registry of American Indian and Alaska Native people, 2007-2009.Arthritis Rheumatol.2014;66(9):2494-2502.[4]Jakes RW, Bae SC, Louthrenoo W, Mok CC, Navarra SV, Kwon N. Systematic review of the epidemiology of systemic lupus erythematosus in the Asia-Pacific region: prevalence, incidence, clinical features, and mortality.Arthritis Care Res (Hoboken).2012;64(2):159-168.[5]Sattwika PD, Mustafa R, Paramaiswari A, Herningtyas EH. Stem cells for lupus nephritis: a concise review of current knowledge.Lupus.2018;27(12):1881-1897.Acknowledgments:The work was supported by SMART II Centre Grant (NMRC/CG/M011/2017_SGH) and SingHealth Foundation (SHF/FG638P/2016).Disclosure of Interests:None declared


2020 ◽  
Author(s):  
Biao Huang ◽  
Wei Han ◽  
Zu-Feng Sheng ◽  
Guo-Liang Shen

Abstract Background Skin cutaneous melanoma (SKCM) is known as the most malignancy and treatment-resistant in human tumor, causing about 72% of deaths in skin carcinoma. However, the potential mechanism and new effective targets remain to be further elucidated. Available datasets such as Gene Expression Omnibus (GEO) can be utilized to search for novel therapeutic targets and prognostic biomarkers. Methods Three data sets were downloaded from GEO database . The differentially expressed genes (DEGs) were identified via Venn software. Protein‐protein interaction network of DEGs was developed and the module hub genes analysis was constructed by Cytoscape. Subsequently, multiple online tools and Kaplan-Meier survival curves were analyzed to detect underlying signaling pathways, gene expression, drug-gene interaction and prognostic value of hub genes. In addition, we explored the correlation between hub genes and immune cell infiltration. At last, the related miRNA, lncRNA networks were constructed by R software. Results A total of 308 DEGs and 12 hub genes were identified. Function and pathway enrichment results demonstrated a correlation between DEGs and the tumor microenvironment, immune response and melanoma tumorigenesis. Subsequently, we focused on assessing potential value of 12 hub genes. Seven hub genes ( CCL4, CCL5, NMU, GAL, CXCL9, CXCL10, CXCL13 ) were identified with significant overall survival for prognosis. What’s more, five of these seven hub genes were found to be related to clinical stages (P values<0.05). In addition, the most important pathways of hub genes include interleukin-10 signaling, peptide ligand-binding receptors, which play important roles in tumor microenvironment for immune activation or immunosuppressive by regulating the infiltration of immune cells. Our results revealed a strong positive correlation between gene expression (CCL4, CCL5, CXCL9, CXCL10 and CXCL13) and immune cell infiltration (B-cell, CD8+ T cells, CD4+ T cells, macrophages, Neutrophils, Dendritic cells). Interestingly, 8 of 12 hub genes (CXCL10, CCL4, CCL5, IL6, CXCL2, PTGER3, GAL, NPY1R) were also found in the predicted drug-gene interaction. The related miRNA, lncRNA for diagnosis and prognosis were found in networks. Conclusion In conclusion, CCL4, CCL5, NMU, GAL, CXCL9, CXCL10, CXCL13 were of high prognostic value and may be potential targets for the diagnosis and therapy of patients with melanoma.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Erika L. Hubbard ◽  
Michelle D. Catalina ◽  
Sarah Heuer ◽  
Prathyusha Bachali ◽  
Robert Robl ◽  
...  

Abstract Arthritis is a common manifestation of systemic lupus erythematosus (SLE) yet understanding of the underlying pathogenic mechanisms remains incomplete. We, therefore, interrogated gene expression profiles of SLE synovium to gain insight into the nature of lupus arthritis (LA), using osteoarthritis (OA) and rheumatoid arthritis (RA) as comparators. Knee synovia from SLE, OA, and RA patients were analyzed for differentially expressed genes (DEGs) and also by Weighted Gene Co-expression Network Analysis (WGCNA) to identify modules of highly co-expressed genes. Genes upregulated and/or co-expressed in LA revealed numerous immune/inflammatory cells dominated by a myeloid phenotype, in which pathogenic macrophages, myeloid-lineage cells, and their secreted products perpetuate inflammation, whereas OA was characterized by fibroblasts and RA of lymphocytes. Genes governing trafficking of immune cells into the synovium by chemokines were identified, but not in situ generation of germinal centers (GCs). Gene Set Variation Analysis (GSVA) confirmed activation of specific immune cell types in LA. Numerous therapies were predicted to target LA, including TNF, NFκB, MAPK, and CDK inhibitors. Detailed gene expression analysis identified a unique pattern of cellular components and physiologic pathways operative in LA, as well as drugs potentially able to target this common manifestation of SLE.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1369.2-1370
Author(s):  
L. Ostendorf ◽  
P. Enghard ◽  
P. Durek ◽  
F. Heinrich ◽  
M. F. Mashreghi ◽  
...  

Background:Plasma Cells (PCs) are implicated in the pathogenesis of Systemic Lupus erythematosus (SLE) and their targeting proved a promising treatment modality. As there is a monoclonal therapeutic antibody targeting CD38 licensed for clinical use in multiple myeloma, plasma cell depletion via CD38 seems to represent a promising path in SLE treatment. While CD38 Is highly expressed on plasmacells, it is present on the surface of subsets of T and B lymphocytes as well as myeloid cells.Objectives:Here we aim to identify the differential expression of CD38 on peripheral blood leukocytes in SLE compared to healthy controls (HC) investigate the function of CD38+ T lymphocytesMethods:We performed flow cytometry to investigate the expression of CD38 on peripheral blood mononuclear cells of SLE patients (n=36) and HCs (n=20). We additionally analyzed the expression of T lymphocytes within the urine of patients with lupus nephritis as well as the skin of SLE patients. We investigated the inflammatory potential of CD38 positive memory T lymphocytes after stimulation and performed single-cell RNA sequencing analyses.Results:CD38 Expression is increased on certain immune cell subsets: Plasmablasts and unswitched Memory B cells, as well as plasmacytoid dendritic cells and CD16+ non-classical monocytes. We observed a drastic increase CD38 in both memory CD4 and CD8 T lymphocytes in SLE patients. These cells were mostly effector T cells (and not regulatory T cells) and expressed other markers of T cell activation and proliferation. We found an enrichment of CD38+ memory T cells in the urine of patients with lupus nephritis. After polyclonal stimulation of T cells, CD38+ produced less inflammatory cytokines. Preliminary single-cell sequencing results indicate that CD38+ CD8+ T-lymphocytes have decreased clonal diversity and that these cells express genes associated with exhaustion and type 1 interferon response.Conclusion:Increased CD38 expression on various lymphocyte subsets provides an additional rationale for investigating CD38-directed therapies in SLE. Targeting CD38 could not only deplete plasma cells but also has the potential to target interferon alpha producing plasmacytoid dendritic cells and modulate inflammatory T cell functions.Disclosure of Interests:Lennard Ostendorf: None declared, Philipp Enghard: None declared, Pawel Durek: None declared, Frederik Heinrich: None declared, Mir-Farzin Mashreghi: None declared, Gerd Rüdiger Burmester Consultant of: AbbVie Inc, Eli Lilly, Gilead, Janssen, Merck, Roche, Pfizer, and UCB Pharma, Speakers bureau: AbbVie Inc, Eli Lilly, Gilead, Janssen, Merck, Roche, Pfizer, and UCB Pharma, Andreas Radbruch: None declared, Falk Hiepe: None declared, Tobias Alexander: None declared


Lupus ◽  
2018 ◽  
Vol 27 (9) ◽  
pp. 1499-1508 ◽  
Author(s):  
N-S Lai ◽  
H-C Yu ◽  
K-Y Huang ◽  
C-H Tung ◽  
H-B Huang ◽  
...  

Objective To investigate whether the aberrant expression of non-coding RNAs (ncRNAs) in T cells from patients with systemic lupus erythematosus (SLE) could contribute to the pathogenesis of lupus. Methods Expression profiles of RNA transcripts in T cells from three patients with SLE and three controls were analyzed by microarray analysis. Potentially aberrant-expressed ncRNAs were validated using T cell samples from 23 patients with SLE and 17 controls. Transfection studies and microarray analyses were conducted to search for any gene expression that is regulated by specific ncRNAs. Results Initial analysis revealed differential expression of 18 ncRNAs in SLE T cells. After validation, decreased expression of H/ACA box small nucleolar RNA 12 (SNORA12) was confirmed in SLE T cells (0.69-fold, P = 0.007) compared with normal T cells, and its expression level was inversely associated with higher SLE disease activity scores. Jurkat cells transfected with a plasmid encoding SNORA12 showed increased expression of two genes and decreased expression of 15 genes in Jurkat cells. These changes of gene expression were significantly associated with the SLE pathway in the Kyoto Encyclopedia of Genes and Genomes map using microarray analysis. Overexpression of SNORA12 altered the expression of CD69, decreased the expression of histone cluster 1 H4 family member k (HIST1H4K), inhibited the secretion of interferon gamma and the expression of HIST1H4K was increased in SLE T cells. Conclusion Among the ncRNAs, we found that the expression level of SNORA12, which belongs to the family of small nucleolar RNAs, was lower in SLE T cells and affected T cell function. This novel finding suggests that aberrant-expressed snoRNAs lead to dysfunction of T cells and may be involved in the immunopathogenesis of SLE.


Lupus ◽  
1998 ◽  
Vol 7 (8) ◽  
pp. 565-568 ◽  
Author(s):  
T Sumida ◽  
T Maeda ◽  
M Taniguchi ◽  
K Nishioka ◽  
W Stohl

Sign in / Sign up

Export Citation Format

Share Document