scholarly journals POS0366 PRO-INFLAMMATORY EFFECTS OF HUMAN APATITE CRYSTALS EXTRACTED FROM PATIENTS SUFFERING FROM CALCIFIC TENDINOPATHY

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 413.1-413
Author(s):  
J. Herman ◽  
B. Le Goff ◽  
J. De Lima ◽  
R. Brion ◽  
C. Chevalier ◽  
...  

Background:Calcific tendonitis of the rotator cuff is due to carbonated apatite deposits in the shoulder tendons. During the evolution of the disease, an acute inflammatory episode may occur leading to the disappearance of the calcification. Although hydroxyapatite crystals-induced inflammation has been previously studied with synthetic crystals, no data are available with calcifications extracted from patients suffering from calcific tendinopathy. The objective of the study was to explore the inflammatory properties of human calcifications and the pathways involved.Objectives:The objective of the study was to explore the inflammatory properties of human calcifications and the pathways involved.Methods:Human calcifications were obtained from patients treated for their shoulder pain related to a calcific tendinopathy of the rotator cuff. Calcifications were extracted by ultrasound-guided lavage and aspiration as previously described [1]. Human calcifications and synthetic hydroxyapatite (sHA) were used in vitro to stimulate human monocytes and macrophages, the human myeloid cell line THP-1 and human tenocytes. The release of IL-1β, IL-6 and IL-8 by cells was quantified by ELISA. Gene expression of pro- and anti-inflammatory cytokines was evaluated by quantitative PCR. NF-kB activation and NLRP3 involvement was assessed in THP-1 cells using a NF-kB inhibitor and a Caspase 1 inhibitor. The inflammatory properties were then assessed in vivo using a mouse air pouch model. The membrane thickness and infiltrate were assessed 6 and 24 hours after the injection of human calcifications or synthetic hydroxyapatite using hematoxylin and eosin staining. Macrophages, neutrophils and lymphocytes infiltrates were assessed by immunohistochemistry. Total RNA was extracted from the membranes and expression of IL-1β, IL-6 and TNFβ was quantified by PCR.Results:Human calcifications were able to induce a significant release of IL-1β when incubated with monocytes, macrophages and THP-1 only if they were first primed with LPS (lipopolysaccharide) for monocytes and macrophages or PMA (Phorbol 12-myristate 13-acetate) for THP-1. No IL-1β was detected in tenocytes’ supernatants. Stimulation of THP-1 by human calcifications led to similar levels of IL-1β when compared to synthetic hydroxyapatite although these levels were significantly inferior in monocytes and macrophages. IL-6 and IL-8 levels were not increased in the supernatants after crystal stimulation. Patient’s crystals enhanced mRNA expression of pro-IL-1β, as well as IL-18, NF-kB and TGFβ when IL-6 and TNFα expression were not. IL-1β production was reduced by the inhibition NF-kB as well as Caspase 1 indicating the role of NLRP3 inflammasome. In vivo, injection of human calcifications or synthetic hydroxyapatite in air pouch led to significant increase in membrane thickness with an infiltrate mainly composed of macrophages. Significant overexpression of IL-1β was only observed in the synthetic hydroxyapatite group.Conclusion:As synthetic hydroxyapatite, human calcifications were able to induce an inflammatory response resulting in the production of IL-1β after NF-kB activation and through NLRP3 inflammasome. In some experiments, IL-1β induction was lower with human calcifications compared to synthetic apatite. Differences in size, shape and protein content may explain this observation.References:[1]Darrieutort-Laffite C, Arnolfo P, Garraud T, Adrait A, Couté Y, Louarn G, et al. Rotator Cuff Tenocytes Differentiate into Hypertrophic Chondrocyte-Like Cells to Produce Calcium Deposits in an Alkaline Phosphatase-Dependent Manner. J Clin Med. 2019 Sep 26;8(10):1544. doi: 10.3390/jcm8101544.Acknowledgements:Fondation Arthritis, Recherche et Rhumatismes and French Society for Rheumatology for their financial supportDisclosure of Interests:None declared

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Julien Herman ◽  
Benoit Le Goff ◽  
Julien De Lima ◽  
Régis Brion ◽  
Catherine Chevalier ◽  
...  

Abstract Background Calcific tendonitis of the rotator cuff is due to carbonated apatite deposits in the shoulder tendons. During the evolution of the disease, an acute inflammatory episode may occur leading to the disappearance of the calcification. Although hydroxyapatite crystal-induced inflammation has been previously studied with synthetic crystals, no data are available with calcifications extracted from patients suffering from calcific tendinopathy. The objective of the study was to explore the inflammatory properties of human calcifications and the pathways involved. Methods Human calcifications and synthetic hydroxyapatite were used in vitro to stimulate human monocytes and macrophages, the human myeloid cell line THP-1, and human tenocytes. The release of IL-1β, IL-6, and IL-8 by cells was quantified by ELISA. The gene expression of pro- and anti-inflammatory cytokines was evaluated by quantitative PCR. NF-kB activation and NLRP3 involvement were assessed in THP-1 cells using a NF-kB inhibitor and a caspase-1 inhibitor. The inflammatory properties were then assessed in vivo using a mouse air pouch model. Results Human calcifications were able to induce a significant release of IL-1β when incubated with monocytes, macrophages, and THP-1 only if they were first primed with LPS (monocytes and macrophages) or PMA (THP-1). Stimulation of THP-1 by human calcifications led to similar levels of IL-1β when compared to synthetic hydroxyapatite although these levels were significantly inferior in monocytes and macrophages. The patient’s crystals enhanced mRNA expression of pro-IL-1β, as well as IL-18, NF-kB, and TGFβ when IL-6 and TNFα expression were not. IL-1β production was reduced by the inhibition of caspase-1 indicating the role of NLRP3 inflammasome. In vivo, injection of human calcifications or synthetic hydroxyapatite in the air pouch led to a significant increase in membrane thickness although significant overexpression of IL-1β was only observed for synthetic hydroxyapatite. Conclusions As synthetic hydroxyapatite, human calcifications were able to induce an inflammatory response resulting in the production of IL-1β after NF-kB activation and through NLRP3 inflammasome. In some experiments, IL-1β induction was lower with human calcifications compared to synthetic apatite. Differences in size, shape, and protein content may explain this observation.


2021 ◽  
Author(s):  
Julien Herman ◽  
Benoit Le Goff ◽  
Julien De Lima ◽  
Régis Brion ◽  
Catherine Chevalier ◽  
...  

Abstract Background: Calcific tendonitis of the rotator cuff is due to carbonated apatite deposits in the shoulder tendons. During the evolution of the disease, an acute inflammatory episode may occur leading to the disappearance of the calcification. Although hydroxyapatite crystals-induced inflammation has been previously studied with synthetic crystals, no data are available with calcifications extracted from patients suffering from calcific tendinopathy. The objective of the study was to explore the inflammatory properties of human calcifications and the pathways involved. Methods: Human calcifications and synthetic hydroxyapatite were used in vitro to stimulate human monocytes and macrophages, the human myeloid cell line THP-1 and human tenocytes. The release of IL-1β, IL-6 and IL-8 by cells was quantified by ELISA. Gene expression of pro- and anti-inflammatory cytokines was evaluated by quantitative PCR. NF-kB activation and NLRP3 involvement was assessed in THP-1 cells using a NF-kB inhibitor and a Caspase 1 inhibitor. The inflammatory properties were then assessed in vivo using a mouse air pouch model. Results: Human calcifications were able to induce a significant release of IL-1β when incubated with monocytes, macrophages and THP-1 only if they were first primed with LPS (monocytes and macrophages) or PMA (THP-1). Stimulation of THP-1 by human calcifications led to similar levels of IL- 1β when compared to synthetic hydroxyapatite although these levels were significantly inferior in monocytes and macrophages. Patient’s crystals enhanced mRNA expression of pro-IL-1β, as well as IL-18, NF-kB and TGFβ when IL-6 and TNFα expression were not. IL-1β production was reduced by the inhibition of Caspase 1 indicating the role of NLRP3 inflammasome. In vivo, injection of human calcifications or synthetic hydroxyapatite in air pouch led to significant increase in membrane thickness although significant overexpression of IL-1β was only observed for synthetic hydroxyapatite. Conclusions: As synthetic hydroxyapatite, human calcifications were able to induce an inflammatory response resulting in the production of IL-1β after NF-kB activation and through NLRP3 inflammasome. In some experiments, IL-1β induction was lower with human calcifications compared to synthetic apatite. Differences in size, shape and protein content may explain this observation.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hong Feng ◽  
Junling Gu ◽  
Fang Gou ◽  
Wei Huang ◽  
Chenlin Gao ◽  
...  

While inflammation is considered a central component in the development in diabetic nephropathy, the mechanism remains unclear. The NLRP3 inflammasome acts as both a sensor and a regulator of the inflammatory response. The NLRP3 inflammasome responds to exogenous and endogenous danger signals, resulting in cleavage of procaspase-1 and activation of cytokines IL-1β, IL-18, and IL-33, ultimately triggering an inflammatory cascade reaction. This study observed the expression of NLRP3 inflammasome signaling stimulated by high glucose, lipopolysaccharide, and reactive oxygen species (ROS) inhibitor N-acetyl-L-cysteine in glomerular mesangial cells, aiming to elucidate the mechanism by which the NLRP3 inflammasome signaling pathway may contribute to diabetic nephropathy. We found that the expression of thioredoxin-interacting protein (TXNIP), NLRP3, and IL-1βwas observed by immunohistochemistry in vivo. Simultaneously, the mRNA and protein levels of TXNIP, NLRP3, procaspase-1, and IL-1βwere significantly induced by high glucose concentration and lipopolysaccharide in a dose-dependent and time-dependent manner in vitro. This induction by both high glucose and lipopolysaccharide was significantly inhibited by N-acetyl-L-cysteine. Our results firstly reveal that high glucose and lipopolysaccharide activate ROS/TXNIP/ NLRP3/IL-1βinflammasome signaling in glomerular mesangial cells, suggesting a mechanism by which inflammation may contribute to the development of diabetic nephropathy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengxiao Chen ◽  
Qi Bai ◽  
Yanting Wu ◽  
Qiongzhen Zeng ◽  
Xiaowei Song ◽  
...  

Artemisia argyi H. Lév. and Vaniot is a traditional medical herb that has been used for a long time in China and other Asian counties. Essential oil is the main active fraction of Artemisia argyi H. Lév. and Vaniot, and its anti-inflammatory potential has been observed in vitro and in vivo. Here, we found that the essential oil of Artemisia argyi H. Lév. and Vaniot (EOAA) inhibited monosodium urate (MSU)- and nigericin-induced NLRP3 inflammasome activation. EOAA suppressed caspase-1 and IL-1β processing and pyroptosis. NF-κB p65 phosphorylation and translocation were also inhibited. In addition, EOAA suppressed nigericin-induced NLRP3 inflammasome activation without blocking ASC oligomerization, suggesting that it may inhibit NLRP3 inflammasome activation by preventing caspase-1 processing. Our study thus indicates that EOAA inhibits NLRP3 inflammasome activation and has therapeutic potential against NLRP3-driven diseases.


2020 ◽  
Author(s):  
Chuan-jiang Liu ◽  
Qiang Fu ◽  
Wenjing Zhou ◽  
Xu Zhang ◽  
Rui Chen ◽  
...  

Abstract Background: Methylprednisolone (MP) is a synthetic corticosteroid with potent anti-inflammatory and antioxidant properties used as therapy for a variety of diseases. The underlying mechanism of MP to reduce acute pancreatitis still needs to be elucidated.Methods: Twenty-four male C57BL/6 mice (6-8 weeks) were used to establish SAP mouse model by administering an intraperitoneal injection of Cae and LPS. Amylase expression levels of serum and PLF were measured with an amylase assay kit. The concentrations of IL-1β and TNF-α in the serum and PLF were detected by ELISA. The level of pancreatic and lung tissue damage and inflammation was assessed by H&E staining and immunofluorescence staining. Western blot and qPCR were used to detect the expression levels of NLRP3, IL-1β and TNF-αin vivo and in vitro.Results: In this study, we found MP, used in the early phase of SAP, decreased the levels of IL-1β and TNF-α in serum and peritoneal lavage fluids (PLF), reduced the level of serum amylase and the expression of MPO in lung tissue, attenuated the pathological injury of the pancreas and lungs in a dose-dependent manner. The expression of NLRP3 and IL-1β in pancreas and lungs was down-regulated significantly depending on the MP concentration. In vitro, MP reduced the levels of IL-1β and TNF-α by down-regulating the expression of NLRP3, IL-1β and p-NF-κB in isolated peritoneal macrophages. Conclusion: MP can attenuate the injury of pancreas and lungs, and the inflammatory response in SAP mice by down-regulating the activation of NF-κB and the NLRP3 inflammasome.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Bin Leng ◽  
Yingjie Zhang ◽  
Xinran Liu ◽  
Zhen Zhang ◽  
Yang Liu ◽  
...  

Long-term exposure to high glucose induces vascular endothelial inflammation that can result in cardiovascular disease. Astragaloside IV (As-IV) is widely used for anti-inflammatory treatment of cardiovascular diseases. However, its mechanism of action is still not fully understood. In this study, we investigated the effect of As-IV on high glucose-induced endothelial inflammation and explored its possible mechanisms. In vivo, As-IV (40 and 80 mg/kg/d) was orally administered to rats for 8 weeks after a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg). In vitro, human umbilical vein endothelial cells (HUVECs) were treated with high glucose (33 mM glucose) in the presence or absence of As-IV, NPS2143 (CaSR inhibitor), BAY 11-7082 (NF-κB p65 inhibitor), and INF39 (NLRP3 inhibitor), and overexpression of CaSR was induced by infection of CaSR-overexpressing lentiviral vectors to further discuss the anti-inflammatory property of As-IV. The results showed that high glucose increased the expression of interleukin-18 (IL-18), interleukin-1β (IL-1β), NLRP3, caspase-1, and ASC, as well as the protein level of TLR4, nucleus p65, and CaSR. As-IV can reverse these changes in vivo and in vitro. Meanwhile, NPS2143, BAY 11-7082, and INF39 could significantly abolish the high glucose-enhanced NLRP3, ASC, caspase-1, IL-18, and IL-1β expression in vitro. In addition, both NPS2143 and BAY 11-7082 attenuated high glucose-induced upregulation of NLRP3, ASC, caspase-1, IL-18, and IL-1β expression. In conclusion, this study suggested that As-IV could inhibit high glucose-induced NLRP3 inflammasome activation and subsequent secretion of proinflammatory cytokines via inhibiting TLR4/NF-κB signaling pathway and CaSR, which provides new insights into the anti-inflammatory activity of As-IV.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4416 ◽  
Author(s):  
Yang Hu ◽  
Qingju Li ◽  
Yunzheng Pan ◽  
Li Xu

Salvianolic acid B is one of the main water-soluble components of Salvia miltiorrhiza Bge. Many reports have shown that it has significant anti-myocardial ischemia effect. However, the underlying mechanism remains unclear. Our present study demonstrated that Sal B could alleviate myocardial ischemic injury by inhibiting the priming phase of NLRP3 inflammasome. In vivo, serum c-troponin I (cTn), lactate dehydrogenase (LDH) levels, the cardiac function and infract size were examined. We found that Sal B could notably reduce the myocardial ischemic injury caused by ligation of the left anterior descending coronary artery. In vitro, Sal B down-regulated the TLR4/NF-κB signaling cascades in lipopolysaccharide (LPS)-stimulated H9C2 cells. Furthermore, Sal B reduced the expression levels of IL-1β and NLRP3 inflammasome in a dose-dependent manner. In short, our study provided evidence that Sal B could attenuate myocardial ischemic injury via inhibition of TLR4/NF-κB/NLRP3 signaling pathway. And in an upstream level, MD-2 may be the potential target.


2015 ◽  
Vol 84 (1) ◽  
pp. 172-186 ◽  
Author(s):  
Moo-Seung Lee ◽  
Haenaem Kwon ◽  
Eun-Young Lee ◽  
Dong-Jae Kim ◽  
Jong-Hwan Park ◽  
...  

Shiga toxin (Stx)-mediated immune responses, including the production of the proinflammatory cytokines tumor necrosis-α (TNF-α) and interleukin-1β (IL-1β), may exacerbate vascular damage and accelerate lethality. However, the immune signaling pathway activated in response to Stx is not well understood. Here, we demonstrate that enzymatically active Stx, which leads to ribotoxic stress, triggers NLRP3 inflammasome-dependent caspase-1 activation and IL-1β secretion in differentiated macrophage-like THP-1 (D-THP-1) cells. The treatment of cells with a chemical inhibitor of glycosphingolipid biosynthesis, which suppresses the expression of the Stx receptor globotriaosylceramide and subsequent endocytosis of the toxin, substantially blocked activation of the NLRP3 inflammasome and processing of caspase-1 and IL-1β. Processing and release of both caspase-1 and IL-1β were significantly reduced or abolished in Stx-intoxicated D-THP-1 cells in which the expression of NLRP3 or ASC was stably knocked down. Furthermore, Stx mediated the activation of caspases involved in apoptosis in an NLRP3- or ASC-dependent manner. In Stx-intoxicated cells, the NLRP3 inflammasome triggered the activation of caspase-8/3, leading to the initiation of apoptosis, in addition to caspase-1-dependent pyroptotic cell death. Taken together, these results suggest that Stxs trigger the NLRP3 inflammasome pathway to release proinflammatory IL-1β as well as to promote apoptotic cell death.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 958-958
Author(s):  
Prithu Sundd ◽  
Maritza Ann Jimenez ◽  
Margaret F. Bennewitz ◽  
Tomasz Brzoska ◽  
Egemen Tutuncuoglu ◽  
...  

Abstract Background: Acute chest syndrome (ACS) is a type of acute lung injury and the leading cause of mortality in Sickle Cell Disease (SCD). Current treatments for ACS are primarily supportive, and there is a critical need for rescue therapies. ACS is often a sequela of acute systemic vaso-occlusive crisis and preceded by thrombocytopenia. However, the role of platelets in the pathogenesis of ACS remains largely unknown. Methods: We used our validated model of vaso-occlusive crisis in transgenic, humanized SCD mice, which is triggered by intravenous challenge with nanogram levels of the TLR4 ligand, lipopolysaccharide (LPS). Platelet-neutrophil aggregates and blood flow in the lung microcirculation was visualized in real time in vivo, using multi-photon-excitation microscopy of intact lung in live SCD mice. SCD or control human blood was perfused through microfluidic channels in vitro and neutrophil-platelet aggregation was visualized using fluorescence microscopy. Platelet derived extracellular vesicles were characterized using nanoparticle tracking and biochemical approaches. Results: We have made a novel finding that the arrest of blood flow and injury in the lung is secondary to blockade of pulmonary arterioles by platelet-neutrophil aggregates. Using in vitro microfluidic studies, we confirmed that platelet-neutrophil aggregation is higher in LPS-treated SCD patient blood compared with healthy controls, and this correlates with increased numbers of platelet-derived extracellular vesicles (EVs) that express IL-1β. Our studies also reveal that platelet-neutrophil aggregation in pulmonary arterioles of SCD mice is associated with an increase in peripheral blood levels of platelet-derived EVs containing IL-1β. Remarkably, inhibition of TLR4 or TLR4/NLRP3-inflammasome activated caspase-1, or inhibition of IL-1β signaling, attenuated release of platelet EVs and platelet-neutrophil aggregation in the lung arterioles of SCD mice in vivo and SCD human blood in vitro . Conclusions: TLR4 and NLRP3-inflammasome-mediated caspase-1 activation in platelets during vaso-occlusive crisis leads to release of IL-1β-containing EVs into the circulation. These circulating platelet EVs promote platelet-neutrophil aggregation in pulmonary arterioles, which results in arrest of blood flow in the lung, leading to ACS. Therapeutic inhibition of TLR4/NLRP3-caspase-1 signaling in platelets or IL-1β signaling is a potential therapy for ACS in SCD patients. Acknowledgments: This study was supported by 1R01HL128297-01 (P.S.) and VMI startup funds (P.S.). Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Yuanyuan Ran ◽  
Wei Su ◽  
Fuhai Gao ◽  
Zitong Ding ◽  
Shuiqing Yang ◽  
...  

NLRP3 inflammasome-mediated pyroptosis is a proinflammatory programmed cell death pathway, which plays a vital role in functional outcomes after stroke. We previously described the beneficial effects of curcumin against stroke-induced neuronal damage through modulating microglial polarization. However, the impact of curcumin on microglial pyroptosis remains unknown. Here, stroke was modeled in mice by middle cerebral artery occlusion (MCAO) for 60 minutes and treated with curcumin (150 mg/kg) intraperitoneally immediately after reperfusion, followed by daily administrations for 7 days. Curcumin ameliorated white matter (WM) lesions and brain tissue loss 21 days poststroke and improved sensorimotor function 3, 10, and 21 days after stroke. Furthermore, curcumin significantly reduced the number of gasdermin D+ (GSDMD+) Iba1+ and caspase-1+Iba1+ microglia/macrophage 21 days after stroke. In vitro, lipopolysaccharide (LPS) with ATP treatment was used to induce pyroptosis in primary microglia. Western blot revealed a decrease in pyroptosis-related proteins, e.g., GSDMD-N, cleaved caspase-1, NLRP3, IL-1β, and IL-18, following in vitro or in vivo curcumin treatment. Mechanistically, both in vivo and in vitro studies confirmed that curcumin inhibited the activation of the NF-κB pathway. NLRP3 knocked down by siRNA transfection markedly increased the inhibitory effects of curcumin on microglial pyroptosis and proinflammatory responses, both in vitro and in vivo. Furthermore, stereotaxic microinjection of AAV-based NLRP3 shRNA significantly improved sensorimotor function and reduced WM lesion following curcumin treatment in MCAO mice. Our study suggested that curcumin reduced stroke-induced WM damage, improved functional outcomes, and attenuated microglial pyroptosis, at least partially, through suppression of the NF-κB/NLRP3 signaling pathway, further supporting curcumin as a potential therapeutic drug for stroke.


Sign in / Sign up

Export Citation Format

Share Document