IRTKS is correlated with progression and survival time of patients with gastric cancer

Gut ◽  
2017 ◽  
Vol 67 (8) ◽  
pp. 1400-1409 ◽  
Author(s):  
Li-Yu Huang ◽  
Xuefei Wang ◽  
Xiao-Fang Cui ◽  
He Li ◽  
Junjie Zhao ◽  
...  

Background and objectivesIRTKS functions as a novel regulator of tumour suppressor p53; however, the role of IRTKS in pathogenesis of gastric cancer is unclear.DesignWe used immunohistochemistry to detect IRTKS levels in 527 human gastric cancer specimens. We generated both IRTKS-deficient and p53-deficient mice to observe survival time of these mice and to isolate mouse embryonic fibroblasts (MEFs) for evaluating in vivo tumorigenicity. Co-immunoprecipitation was used to study the interaction among p53, MDM2 and IRTKS, as well as the ubiquitination of p53.ResultsIRTKS was significantly overexpressed in human gastric cancer, which was conversely associated with wild-type p53 expression. Among patients with wild-type p53 (n=206), those with high IRTKS expression (n=141) had a shorter survival time than those with low IRTKS (n=65) (p=0.0153). Heterozygous p53+/− mice with IRTKS deficiency exhibited significantly delayed tumorigenesis and an extended tumour-free survival time. p53+/− MEFs without IRTKS exhibited attenuated in vivo tumorigenicity. IRTKS depletion upregulated p53 and its target genes, such as BAX and p21. Intriguingly, IRTKS overexpression promoted p53 ubiquitination and degradation in MEFs and gastric cancer cells. Under DNA damage conditions, IRTKS was phosphorylated at Ser331 by the activated Chk2 kinase and then dissociated from p53, along with the p53-specific E3 ubiquitin ligase MDM2, resulting in attenuated p53 ubiquitination and degradation.ConclusionIRTKS overexpression is negatively correlated with progression and overall survival time of patients with gastric cancer with wild-type p53 through promotion of p53 degradation via the ubiquitin/proteasome pathway.

Gut ◽  
1999 ◽  
Vol 44 (3) ◽  
pp. 366-371 ◽  
Author(s):  
M Ohashi ◽  
F Kanai ◽  
H Ueno ◽  
T Tanaka ◽  
K Tateishi ◽  
...  

BACKGROUND/AIMSGastric cancer is one of the most prevalent forms of cancer in East Asia. Point mutation of the p53 gene has been reported in more than 60% of cases of gastric cancer and can lead to genetic instability and uncontrolled cell proliferation. The purpose of this investigation was to evaluate the potential of p53 gene therapy for gastric cancer.METHODSThe responses of human gastric cancer cell lines, MKN1, MKN7, MKN28, MKN45, and TMK-1, to recombinant adenoviruses encoding wild type p53 (AdCAp53) were analysed in vitro. The efficacy of the AdCAp53 treatment for MKN1 and MKN45 subcutaneous tumours in nude mice was assessed in vivo.RESULTSp53-specific growth inhibition was observed in vitro in two of four gastric cancer cell lines with mutated p53, but not in the wild type p53 cell line. The mechanism of the killing of gastric cancer cells by AdCAp53 was found, by flow cytometric analysis and detection of DNA fragmentation, to be apoptosis. In vivo studies showed that the growth of subcutaneous tumours of p53 mutant MKN1 cells was significantly inhibited by direct injection of AdCAp53, but no significant growth inhibition was detected in the growth of p53 wild type MKN45 tumours.CONCLUSIONSAdenovirus mediated reintroduction of wild type p53 is a potential clinical utility in gene therapy for gastric cancers.


2021 ◽  
pp. 096032712110532
Author(s):  
Lin Gu ◽  
Hailun Zheng ◽  
Rui Zhao ◽  
Xiaojing Zhang ◽  
Qizhi Wang

Introduction Whether and how mesoderm posterior 1 (MESP1) plays a role in the proliferation of gastric cancer cells remain unclear. Methods The expression of MESP1 was compared in 48 human gastric cancer tissues and adjacent normal tissues. Knockdown of MESP1 was performed to investigate the role of MESP1 in the proliferation and apoptosis of BGC-823 and MGC-803 gastric cancer cells. Knockdown of alternative reading frame (ARF) was performed to study the role of ARF in the inhibitory effect of MESP1 knockdown on cell proliferation in gastric cancer cells. Mouse subcutaneous xenograft tumor model bearing BGC-823 cells was used to investigate the role of MESP1 in the growth of gastric tumor in vivo. The effect of seven active ingredients from T. terrestris on MESP1 expression was tested. The anti-cancer effect of diosgenin was confirmed in gastric cancer cells. MESP1 dependence of the anti-cancer effect of diosgenin was confirmed by MESP1 knockdown. Results MESP1 was highly expressed in human gastric cancer tissues ( p < 0.05). MESP1 knockdown induced apoptosis and up-regulated the expression of ARF in gastric cancer cells ( p < 0.05). Knockdown of ARF attenuated the anti-cancer effect of MESP1 knockdown ( p < 0.05). In addition, MESP1 knockdown also suppressed tumor growth in vivo ( p < 0.05). Diosgenin inhibits both mRNA and protein expression of MESP1 ( p < 0.05). MESP1 knockdown attenuated the anti-cancer effect of diosgenin ( p < 0.05). Conclusions MESP1 promotes the proliferation of gastric cancer cells via inhibiting ARF expression. Diosgenin exerts anti-cancer effect through inhibiting MESP1 expression in gastric cancer cells.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2020 ◽  
Author(s):  
Hui Guo ◽  
Jianping Zou ◽  
Ling Zhou ◽  
Yan He ◽  
Miao Feng ◽  
...  

Abstract Background:Nucleolar and spindle associated protein (NUSAP1) is involved in tumor initiation, progression and metastasis. However, there are limited studies regarding the role of NUSAP1 in gastric cancer (GC). Methods: The expression profile and clinical significance of NUSAP1 in GC were analysed in online database using GEPIA, Oncomine and KM plotter, which was further confirmed in clinical specimens.The functional role of NUSAP1 were detected utilizing in vitro and in vivo assays. Western blotting, qRT-PCR, the cycloheximide-chase, immunofluorescence staining and Co-immunoprecipitaion (Co-IP) assays were performed to explore the possible molecular mechanism by which NUSAP1 stabilizes YAP protein. Results:In this study, we found that the expression of NUSAP1 was upregulated in GC tissues and correlates closely with progression and prognosis. Additionally, abnormal NUSAP1 expression promoted malignant behaviors of GC cells in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 physically interacts with YAP and furthermore stabilizes YAP protein expression, which induces the transcription of Hippo pathway downstream target genes. Furthermore, the effects of NUSAP1 on GC cell growth, migration and invasion were mainly mediated by YAP. Conclusions:Our data demonstrates that the novel NUSAP1-YAP axis exerts an critical role in GC tumorigenesis and progression, and therefore could provide a novel therapeutic target for GC treatment.


2016 ◽  
Vol 40 (7) ◽  
pp. 770-778 ◽  
Author(s):  
Hao Nie ◽  
Yu Wang ◽  
Yong Qin ◽  
Xing-Guo Gong

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1923 ◽  
Author(s):  
Bo-Kyung Kim ◽  
Jae-Ho Cheong ◽  
Joo-Young Im ◽  
Hyun Seung Ban ◽  
Seon-Kyu Kim ◽  
...  

Although gastric cancer is a common cause of cancer mortality worldwide, its biological heterogeneity limits the available therapeutic options. Therefore, identifying novel therapeutic targets for developing effective targeted therapy of gastric cancer is a pressing need. Here, we investigate molecular function and regulatory mechanisms of Vestigial-like 1 (VGLL1) in gastric cancer. Microarray analysis of 556 gastric cancer tissues revealed that VGLL1 was a prognostic biomarker that correlated with PI3KCA and PI3KCB. VGLL1 regulates the proliferation of gastric cancer cells, as shown in live cell imaging, sphere formation, and in vivo xenograft model. Tail vein injection of NUGC3 cells expressing shVGLL1 resulted in less lung metastasis occurring when compared to the control. In contrast, larger metastatic lesions in lung and liver were detected in the VGLL1-overexpressing NUGC3 cell xenograft excision mouse model. Importantly, VGLL1 expression is transcriptionally regulated by the PI3K-AKT-β-catenin pathway. Subsequently, MMP9, a key molecule in gastric cancer, was explored as one of target genes that were transcribed by VGLL1-TEAD4 complex, a component of the transcription factor. Taken together, PI3K/AKT/β-catenin signaling regulates the transcription of VGLL1, which promotes the proliferation and metastasis in gastric cancer. This finding suggests VGLL1 as a novel prognostic biomarker and a potential therapeutic target.


Gut ◽  
2019 ◽  
Vol 69 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Chang Xu ◽  
Wen Fong Ooi ◽  
Aditi Qamra ◽  
Jing Tan ◽  
Benjamin Yan-Jiang Chua ◽  
...  

ObjectiveGastric cancer (GC) is a leading cause of cancer mortality. Previous studies have shown that hepatocyte nuclear factor-4α (HNF4α) is specifically overexpressed in GC and functionally required for GC development. In this study, we investigated, on a genome-wide scale, target genes of HNF4α and oncogenic pathways driven by HNF4α and HNF4α target genes.DesignWe performed HNF4α chromatin immunoprecipitation followed by sequencing across multiple GC cell lines, integrating HNF4α occupancy data with (epi)genomic and transcriptome data of primary GCs to define HNF4α target genes of in vitro and in vivo relevance. To investigate mechanistic roles of HNF4α and HNF4α targets, we performed cancer metabolic measurements, drug treatments and functional assays including murine xenograft experiments.ResultsGene expression analysis across 19 tumour types revealed HNF4α to be specifically upregulated in GCs. Unbiased pathway analysis revealed organic acid metabolism as the top HNF4α-regulated pathway, orthogonally supported by metabolomic analysis. Isocitrate dehydrogenase 1 (IDH1) emerged as a convergent HNF4α direct target gene regulating GC metabolism. We show that wild-type IDH1 is essential for GC cell survival, and that certain GC cells can be targeted by IDH1 inhibitors.ConclusionsOur results highlight a role for HNF4α in sustaining GC oncogenic metabolism, through the regulation of IDH1. Drugs targeting wild-type IDH1 may thus have clinical utility in GCs exhibiting HNF4α overexpression, expanding the role of IDH1 in cancer beyond IDH1/2 mutated malignancies.


Sign in / Sign up

Export Citation Format

Share Document