direct target gene
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 49)

H-INDEX

20
(FIVE YEARS 5)

2022 ◽  
Vol 12 (2) ◽  
pp. 239-247
Author(s):  
Kun Liu ◽  
Wanjing Yu ◽  
Yaoyao Tang ◽  
Chao Chen

Background: Bronchial asthma is a common chronic inflammatory disease of the respiratory tract, whose pathogenesis involves a variety of factors. The purpose of this study was to explore the effect of traditional Chinese medicine Glycyrrhizin (Gly) on lipopolysaccharide (LPS)-induced inflammation and apoptosis of bronchial epithelial cells and its action mechanism. Methods: Gly (20 µM) was used to treat bronchial epithelial BEAS-2B cells stimulated with LPS. The expression of SRC and miR-146b-5p in BEAS-2B cells was modified by the respective transfections with pcDNA-SRC, miR-146b-5p mimic and miR-146b-5p inhibitor. STRING and Starbase online databases were used to predict the relationship between Gly, miR-146b-5p and SRC. Luciferase reporter assays were performed to verify the binding of miR-146b-5p to SRC. The viability, inflammatory response and apoptosis of BEAS-2B cells were examined by CCK-8, ELISA and Tunel assays respectively. The expressions of apoptosis-related proteins (Bcl-2, Bax, caspase3 and Cleaved-caspase3), SRC and miR-146b-5p were detected by qRT-PCR or western blotting. Results: Gly inhibited LPS-induced inflammation and apoptosis in BEAS-2B cells. The interaction between Gly and SRC was predicted by STRING. SRC expression was high in BEAS-2B cells stimulated with LPS and could be negatively regulated by Gly. Overexpression of SRC effectively alleviated the inhibitory effect of Gly on LPS-induced damages in BEAS-2B cells. In addition, results of luciferase reporter assays verified SRC as a direct target gene of miR-146b-5p. The expression level of miR-146b-5p was downregulated by LPS stimulation in BEAS-2B cells. Gly decreased the expression of SRC in LPS-stimulated BEAS-2B cells. These results could all be reversed by miR-146b-5p knockdown. Conclusion: Gly decreases the expression of SRC by upregulating the level of miR-146b-5p, thus alleviating the inflammation and apoptosis of bronchial epithelial cells treated with LPS. Our results provide a new theoretical basis for applying Gly to the clinical management of asthma.


2021 ◽  
Vol 22 (23) ◽  
pp. 13052
Author(s):  
Ryan G. Toedebusch ◽  
Christopher A. Lucchesi ◽  
Eshetu T. Debebe ◽  
Luke A. Wittenburg ◽  
Xinbin Chen ◽  
...  

Under the influence of transforming growth factor-beta (TGFβ), glioma-associated microglia produce molecules that promote glioma growth and invasion. Olfactomedin-like 3 (Olfml3), a novel, secreted glycoprotein, is known to promote several non-CNS cancers. While it is a direct TGFβ1 target gene in microglia, the role of microglia-derived OLFML3 in glioma progression is unknown. Here, we tested the hypotheses that microglial Olfml3 is integral to the pro-tumorigenic glioma-associated microglia phenotype and promotes glioma cell malignancy. Using an Olfml3 knockout microglial cell line (N9), we demonstrated that Olfml3 is a direct target gene of all TGFβ isoforms in murine microglia. Moreover, loss of Olfml3 attenuated TGFβ-induced restraint on microglial immune function and production of cytokines that are critical in promoting glioma cell malignancy. Importantly, microglia-derived OLFML3 directly contributes to glioma cell malignancy through increased migration and invasion. While exposure to conditioned medium (CM) from isogenic control microglia pre-treated with TGFβ increased mouse glioma cell (GL261) migration and invasion, this effect was abolished with exposure to CM from TGFβ-treated Olfml3-/- microglia. Taken together, our data suggest that Olfml3 may serve as a gatekeeper for TGFβ-induced microglial gene expression, thereby promoting the pro-tumorigenic microglia phenotype and glioma cell malignancy.


2021 ◽  
Author(s):  
Keli Liu ◽  
Shaofan Hu ◽  
Lu Qiu ◽  
Meng Wang ◽  
Zhengwen Zhang ◽  
...  

It is worth interrogating why no more experimental evidence confirming those findings, since being reported by Manning's group in 2014's Nature (doi: 10.1038/nature13492), has been provided in the hitherto known literature. A key issue arising from their work is of particular concern about whether the mTORC1 signaling to upregulation of Nrf1-targeted proteasomal expression profiles occurs directly by SREBP1. In this study, our experiment evidence revealed that Nrf1 is not a direct target of SREBP1, although both are involved in the rapamycin-responsive regulatory networks. Closely scrutinizing two distinct transcriptomic datasets unraveled no significant changes in transcriptional expression of Nrf1 and almost all proteasomal subunits in siSREBP1 or SREBP1-/- cells, when compared to equivalent controls. However, distinct upstream signaling to Nrf1 dislocation by p97 and its processing by DDI1/2, along with downstream proteasomal expression, may be monitored by mTOR signaling, to various certain extents, depending on distinct experimental settings in different types of cells. Our further evidence has been obtained from DDI1-/- (DDI2insC) cells, demonstrating that putative effects of mTOR on the rapamycin-responsive signaling to Nrf1 and proteasomes may also be executed partially through a DDI1/2-independent mechanism, albeit the detailed regulatory events remain to be determined.


2021 ◽  
Author(s):  
Xue-Yan Shen ◽  
Li-Li Cheng ◽  
Jing Huang ◽  
Hong-Fang Kong ◽  
Ya-Jing Chang ◽  
...  

Abstract Objective: Abnormal cell growth and invasion are known to be involved in the pathogenesis of preeclampsia (PE). Previous studies have shown that miR-1271-5p promotes cell proliferation and migration. However, the expression and function of miR-1271-5p in PE still remains unclear.Materials and Methods: The expression of miR-1271-5p was detected from blood serum from pregnant and placental tissues. Silence or overexpression of miR-1271-5p in HTR8/SVneo cells. Real-time quantitative PCR was used to detect miR-1271-5p expression. Cell proliferation and invasion were determined using separately MTT assay Wound-scratch healing assay.Results: In this study, we identified a downregulation in miR-1271-5p in blood samples and placentas of PE patients compared to healthy pregnant controls. In addition, overexpression of miR-1271-5p promoted trophoblast cell proliferation and invasion, while depletion of miR-1271-5p reduced these effects. Importantly, we revealed that grainyhead-like protein 2 homolog (Grhl2), which could inhibit proliferation and migration of trophoblast cells, was a direct target gene of miR-1271-5p in primary trophoblast cells and HTR-8/SVneo cells. Furthermore, Our results showed that Grhl2 bound to the cell adhesion molecule L1-like protein (CHL1) promoter and regulated it transcription in trophoblast cells.Conclusion: Grhl2-mediated effects of miR-1271-5p on cell invasion and proliferation of trophoblast cells by promoting CHL1 transcription. The miR-1271-5p/Grhl2/CHL1 axis potentially provides a new therapeutic target for PE.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2848
Author(s):  
In-Seon Bae ◽  
Sang Hoon Kim

Exosomes participate in intercellular communication by transferring molecules from donor to recipient cells. Exosomes are found in various body fluids, including blood, urine, cerebrospinal fluid and milk. Milk exosomes contain many endogenous microRNA molecules. MicroRNAs are small noncoding RNAs and have important roles in biological processes. The specific biological functions of milk exosomes are not well understood. In this study, we investigated the effects of milk exosomes on melanin production in melanoma cells and melanocytes. We found that milk exosomes decreased melanin contents, tyrosinase activity and the expression of melanogenesis-related genes in melanoma cells and melanocytes. Bovine-specific miR-2478 in exosomes inhibited melanin production. We found that Rap1a is a direct target gene of miR-2478 in melanoma cells and melanocytes. MiR-2478 overexpression decreased Rap1a expression, which led to downregulated melanin production and expression of melanogenesis-related genes. Inhibition of Rap1a expression decreased melanogenesis through the Akt-GSK3β signal pathway. These results support the role of miR-2478 derived from milk exosomes as a regulator of melanogenesis through direct targeting of Rap1a. These results show that milk exosomes could be useful cosmeceutical ingredients to improve whitening.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Youzhen Hu ◽  
Bin Liu ◽  
Huazhong Ren ◽  
Liping Chen ◽  
Christopher B. Watkins ◽  
...  

AbstractCytokinins (CKs) are a class of adenine-derived plant hormones that plays pervasive roles in plant growth and development including cell division, morphogenesis, lateral bud outgrowth, leaf expansion and senescence. CKs as a “fountain of youth” prolongs leaf longevity by inhibiting leaf senescence, and therefore must be catabolized for senescence to occur. AtNAP, a senescence-specific transcription factor has a key role in promoting leaf senescence. The role of AtNAP in regulating CK catabolism is unknown. Here we report the identification and characterization of AtNAP-AtCKX3 (cytokinin oxidase 3) module by which CKs are catabolized during leaf senescence in Arabidopsis. Like AtNAP, AtCKX3 is highly upregulated during leaf senescence. When AtNAP is chemically induced AtCKX3 is co-induced; and when AtNAP is knocked out, the expression of AtCKX3 is abolished. AtNAP physically binds to the cis element of the AtCKX3 promoter to direct its expression as revealed by yeast one-hybrid assays and in planta experiments. Leaves of the atckx3 knockout lines have higher CK concentrations and a delayed senescence phenotype compared with those of WT. In contrast, leaves with inducible expression of AtCKX3 have lower CK concentrations and exhibit a precocious senescence phenotype compared with WT. This research reveals that AtNAP transcription factor˗AtCKX3 module regulates leaf senescence by connecting two antagonist plant hormones abscisic acid and CKs.


2021 ◽  
Author(s):  
Juan Zhang ◽  
Xinwei Xu ◽  
Min Wang

Aim: This study aimed to evaluate the levels and functions of miR-101-3p in neonatal sepsis (NS). Materials & methods: Quantitative real-time PCR was conducted to investigate the expression of miR-101-3p and the receiver operating characteristic curve was applied to manifest its diagnostic effects. Results: MiR-101-3p was increased in the NS patients and the dysregulation of miR-101-3p was associated with levels of procalcitonin, CRP, IL-8 and TNF-α. The combination of miR-101-3p and procalcitonin could function as a promising indicator in distinguishing NS patients. The silenced miR-101-3p reversed the increased levels of TNF-α and IL-8 caused by lipopolysaccharide in vitro. DUSP1 was identified as a direct target gene of miR-101-3p in NS. Conclusion: The abundance of miR-101-3p facilitated the inflammation in NS by targeting DUSP1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Heyuan Zhang ◽  
Nanhui Chen ◽  
Zhihai Deng ◽  
Yang Mai ◽  
Limin Deng ◽  
...  

Prostate cancer (PCa) is a serious disease that affects men’s health. To date, no effective and long-lasting treatment option for this condition is available in clinical practice. ANT2 is highly expressed in a variety of hormone-related cancers, but its relationship and regulatory mechanism with PCa are unclear. In this study, we found that ANT2 expression was significantly upregulated in PCa tissues relative to control samples. Genetic knockdown of ANT2 effectively inhibited, while overexpression promoted, proliferation, migration, and invasion of PCa cells. In addition, miR-137 expression was reduced in prostate cancer tissues relative to control tissues. We identified a regulatory site for miR-137 in the 3′-UTR of ANT2 mRNA; luciferase reporter assays indicated that ANT2 is a direct target gene for miR-137. Transfecting cells with miR-137 mimics and/or an ANT2-encoding plasmid revealed that ANT2 promotes proliferation, migration, and invasion of PCa, whereas co-expression of miR-137 mimics inhibited these behaviors. These observations suggest that miR-137 mimics inhibit development of PCa by antagonizing expression of ANT2. Furthermore, tumorigenic assays in nude mice showed that miR-137 inhibitors abolished the inhibitory effect of ANT2 knockdown on PCa tumor growth. Collectively, our findings suggest that ANT2, a target gene of miR-137, is intimately involved in development of PCa, providing new evidence for the mechanism underlying pathogenesis of PCa as well as new options for targeted therapy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuan Zhang ◽  
Shengqian Dou ◽  
Xia Qi ◽  
Zhenzhen Zhang ◽  
Yujie Qiao ◽  
...  

Diabetes mellitus (DM) is a complex metabolic disorder. Long-term hyperglycemia may induce diabetic keratopathy (DK), which is mainly characterized by delayed corneal epithelial regeneration. MicroRNAs (miRNAs) have been reported to play regulatory roles during tissue regeneration. However, the molecular mechanism by which miRNAs influence epithelial regeneration in DK is largely unknown. In this study, we performed miRNA and mRNA sequencing of regenerative corneal epithelium tissue from streptozotocin-induced type 1 diabetic (T1DM) and wild-type mice to screen for differentially expressed miRNAs and mRNAs. Based on regulatory network analysis, miR-223-5p was selected for subsequent experiments and Hpgds was then identified as a direct target gene. MiR-223-5p downregulation significantly promoted diabetic corneal epithelial wound healing and nerve regeneration. However, the beneficial effects of miR-223-5p inhibition were abolished by an Hpgds inhibitor. Furthermore, mechanistic studies demonstrated that miR-223-5p suppression ameliorated inflammation and enhanced cell proliferation signaling in DK. Taken together, our findings revealed that the regulatory role of miR-223-5p in diabetic corneal epithelial and nerve regeneration by mediating inflammatory processes and cell proliferation signaling. And silencing miR-223-5p may contribute to the development of potential therapeutic strategies for DK.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhouying Wu ◽  
Min Wang ◽  
Feng Li ◽  
Feng Wang ◽  
Jianchao Jia ◽  
...  

The inhibitor of CDK4/6 has been clinically used for treating certain types of cancer which are characterized by G0/G1 acceleration induced by the CDK4/6-RB1 pathway. On the contrary, the cell cycle–related molecules are abnormal in over 50% of the patients with gastric cancer (GC), but the efficiency of inhibiting CDK4/6 does not work well as it is expected. In our study, we found HMGA2 promotes GC through accelerating the S–G2/M phase transition, instead of G0/G1. We also found CDK13 is the direct target gene of HMGA2. Importantly, we analyzed 200 pairs of GC and the adjacent tissue and proved the positive relation between HMGA2 and CDK13; moreover, high expression of both genes predicts a poorer prognosis than the expression of single gene does. We explored the effect of the novel CDK12/13 inhibiting agent, SR-4835, on high HMGA2 expression GC and found inhibition of both genes jointly could reach a satisfied result. Therefore, we suggest that inhibition of CDK13 and HMGA2 simultaneously could be an effective strategy for high HMGA2 expression GC. To detect the expression of both genes simultaneously and individually could be of benefit to predict prognosis for GC.


Sign in / Sign up

Export Citation Format

Share Document