Liquid biopsies to track trastuzumab resistance in metastatic HER2-positive gastric cancer

Gut ◽  
2018 ◽  
Vol 68 (7) ◽  
pp. 1152-1161 ◽  
Author(s):  
De-Shen Wang ◽  
Ze-Xian Liu ◽  
Yun-Xin Lu ◽  
Hua Bao ◽  
Xue Wu ◽  
...  

ObjectiveTo monitor trastuzumab resistance and determine the underlying mechanisms for the limited response rate and rapid emergence of resistance of HER2+ metastatic gastric cancer (mGC).DesignTargeted sequencing of 416 clinically relevant genes was performed in 78 paired plasma and tissue biopsy samples to determine plasma-tissue concordance. Then, we performed longitudinal analyses of 97 serial plasma samples collected from 24 patients who were HER2+  to track the resistance during trastuzumab treatment and validated the identified candidate resistance genes.ResultsThe results from targeted sequencing-based detection of somatic copy number alterations (SCNA) of HER2 gene were highly consistent with fluorescence in situ hybridisation data, and the detected HER2 SCNA was better than plasma carcinoembryonic antigen levels at predicting tumour shrinkage and progression. Furthermore, most patients with innate trastuzumab resistance presented high HER2 SCNA during progression compared with baseline, while HER2 SCNA decreased in patients with acquired resistance. PIK3CA mutations were significantly enriched in patients with innate resistance, and ERBB2/4 genes were the most mutated genes, accounting for trastuzumab resistance in six (35.3%) and five (29.4%) patients in baseline and progression plasma, respectively. Patients with PIK3CA/R1/C3 or ERBB2/4 mutations in the baseline plasma had significantly worse progression-free survival. Additionally, mutations in NF1 contributed to trastuzumab resistance, which was further confirmed through in vitro and in vivo studies, while combined HER2 and MEK/ERK blockade overcame trastuzumab resistance.ConclusionLongitudinal circulating tumour DNA sequencing provides novel insights into gene alterations underlying trastuzumab resistance in HER2+mGC.

2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 35-35
Author(s):  
Y. Y. Janjigian ◽  
N. T. Villegas ◽  
J. P. Holland ◽  
M. A. Shah ◽  
V. Divilov ◽  
...  

35 Background: The ToGA study established HER2 is a target in the treatment of gastric cancer. Trastuzumab pharmacokinetics and organ distribution is varied in each patient and is heavily affected by the extent of tumor load (Oude Munnink, JCO 2010). 89Zr-trastuzumab HER2 PET can be used to image that variability and may aid in detection and staging of HER2-positive tumors. We are implementing 89Zr-radiolabeled trastuzumab PET in vivo for imaging of HER2-positive gastric cancer and for future non-invasive assessment of HER2 inhibition with a dual irreversible HER1/HER2 inhibitor, BIBW-2992. Methods: 89Zr (t1/2 = 3.17 days) was prepared via the 89Y(p,n)89Zr transmutation with high radiochemical yields (1.52±0.11 mCi/μAh) and purity (>99.99%). Trastuzumab was functionalized with the tris-hydroxamate chelate, desferrioxamine B (DFO) and radiolabeled with [89Zr]Zr-oxalate at room temperature. 89Zr-trastuzumab PET experiments in athymic nu/nu mice bearing sub-cutaneous NCI-N87 (HER2+) and/or SNU1 (HER2-) tumors were conducted. NCI-N87 gastric cancer cells were treated with BIBW-2992. Results: 89Zr-trastuzumab radiolabeling proceeded in high radiochemical yield and specific-activity of 2.82±0.05 mCi/mg. In vitro assays demonstrated >99% radiochemical purity with an immunoreactive fraction of 0.87±7. In vivo biodistribution experiments revealed high and specific uptake in HER2-positive tumors after 72 h (85.2±11.1% ID/g) with retention of activity for over 120 h. No uptake was seen in HER2-negative gastric cancer xenografts. In vitro, BIBW-2992 demonstrates dose dependent growth inhibition in the HER2+ gastric cancer cell line. Conclusions: 89Zr-trastuzumab provides quantitative and highly-specific delineation of HER2-positive gastric cancer. In vivo studies of BIBW2-2992 in gastric cancer with 89Zr-trastuzumab HER2 PET response assessment are underway. A Phase I study of 89Zr-trastuzumab PETin HER2-positive patients is to open at MSKCC imminently. No significant financial relationships to disclose.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jun Wang ◽  
Zhigang He ◽  
Bo Sun ◽  
Wenhai Huang ◽  
Jianbin Xiang ◽  
...  

Pleckstrin-2 (PLEK2) is a crucial mediator of cytoskeletal reorganization. However, the potential roles of PLEK2 in gastric cancer are still unknown. PLEK2 expression in gastric cancer was examined by western blotting and real-time PCR. Survival analysis was utilized to test the clinical impacts of the levels of PLEK2 in gastric cancer patients. In vitro and in vivo studies were used to estimate the potential roles played by PLEK2 in modulating gastric cancer proliferation, self-renewal, and tumourigenicity. Bioinformatics approaches were used to monitor the effect of PLEK2 on epithelial-mesenchymal transition (EMT) signalling pathways. PLEK2 expression was significantly upregulated in gastric cancer as compared with nontumour samples. Kaplan-Meier plotter analysis revealed that gastric cancer patients with higher PLEK2 levels had substantially poorer overall survival compared with gastric cancer patients with lower PLEK2 levels. The upregulation or downregulation of PLEK2 in gastric cancer cell lines effectively enhanced or inhibited cell proliferation and proinvasive behaviour, respectively. Additionally, we also found that PLEK2 enhanced EMT through downregulating E-cadherin expression and upregulating Vimentin expression. Our findings demonstrated that PLEK2 plays a potential role in gastric cancer and may be a novel therapeutic target for gastric cancer.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Lili Jiang ◽  
Liangliang Ren ◽  
Han Chen ◽  
Jinyuan Pan ◽  
Zhuojun Zhang ◽  
...  

AbstractHER2+ breast cancer (BC) is characterized by rapid growth, early recurrence, early metastasis, and chemoresistance. Trastuzumab is the most effective treatment for HER2+ BC and effectively reduces the risk of recurrence and death of patients. Resistance to trastuzumab results in cancer recurrence and metastasis, leading to poor prognosis of HER2+ BC. In the present study, we found that non-structural maintenance of chromosome condensin 1 complex subunit G (NCAPG) expression was highly upregulated in trastuzumab-resistant HER2+ BC. Ectopic NCAPG was positively correlated with tumor relapse and shorter survival in HER2+ BC patients. Moreover, overexpression of NCAPG promoted, while silencing of NCAPG reduced, the proliferative and anti-apoptotic capacity of HER2+ BC cells both in vitro and in vivo, indicating NCAPG reduces the sensitivity of HER2+ BC cells to trastuzumab and may confer trastuzumab resistance. Furthermore, our results suggest that NCAPG triggers a series of biological cascades by phosphorylating SRC and enhancing nuclear localization and activation of STAT3. To summarize, our study explores a crucial role for NCAPG in trastuzumab resistance and its underlying mechanisms in HER2+ BC, and suggests that NCAPG could be both a potential prognostic marker as well as a therapeutic target to effectively overcome trastuzumab resistance.


2019 ◽  
Vol 78 (6) ◽  
pp. 826-836 ◽  
Author(s):  
Shuying Shen ◽  
Yizheng Wu ◽  
Junxin Chen ◽  
Ziang Xie ◽  
Kangmao Huang ◽  
...  

ObjectivesCircular RNAs (circRNA) expression aberration has been identified in various human diseases. In this study, we investigated whether circRNAs could act as competing endogenous RNAs to regulate the pathological process of osteoarthritis (OA).MethodsCircRNA deep sequencing was performed to the expression of circRNAs between OA and control cartilage tissues. The regulatory and functional role of CircSERPINE2 upregulation was examined in OA and was validated in vitro and in vivo, downstream target of CircSERPINE2 was explored. RNA pull down, a luciferase reporter assay, biotin-coupled microRNA capture and fluorescence in situ hybridisation were used to evaluate the interaction between CircSERPINE2 and miR-1271-5 p, as well as the target mRNA, E26 transformation-specific-related gene (ERG). The role and mechanism of CircSERPINE2 in OA was also explored in rabbit models.ResultsThe decreased expression of CircSERPINE2 in the OA cartilage tissues was directly associated with excessive apoptosis and imbalance between anabolic and catabolic factors of extracellular matrix (ECM). Mechanistically, CircSERPINE2 acted as a sponge of miR-1271-5 p and functioned in human chondrocytes (HCs) through targeting miR-1271-5 p and ERG. Intra-articular injection of adeno-associated virus-CircSERPINE2-wt alleviated OA in the rabbit model.ConclusionsOur results reveal an important role for a novel circRNA-CircSERPINE2 in OA progression. CircSERPINE2 overexpression could alleviate HCs apoptosis and promote anabolism of ECM through miR-1271-ERG pathway. It provides a potentially effective therapeutic strategy for OA progression.


2016 ◽  
Author(s):  
Yoshikane Nonagase ◽  
Kimio Yonesaka ◽  
Satomi Watanabe ◽  
Koji Haratani ◽  
Takayuki Takahama ◽  
...  

2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Xiaoyang Han ◽  
Hua Jiang ◽  
Jianni Qi ◽  
Jiamei Li ◽  
Jinghan Yang ◽  
...  

AbstractWith the development of molecular biotechnology and sequencing techniques, long non-coding RNAs (lncRNAs) have been shown to play a vital role in a variety of cancers including lung cancer. In our previous study, we used RNA sequencing and high-content screening proliferation screening data to identify lncRNAs that were significantly associated with tumour biological functions such as LINC01426. Herein, based on previous work, we report a novel lncRNA UPLA1 (upregulation promoting LUAD-associated transcript-1), which has not been explored or reported in any previous studies. Our results showed that UPLA1 is highly expressed and regulates important biological functions in lung adenocarcinoma. In vitro experiments revealed that UPLA1 promoted the migration, invasion, and proliferation abilities, and is related to cell cycle arrest, in lung adenocarcinoma cells. Moreover, the upregulation of UPLA1 significantly improved the growth of tumours in vivo. We identified that UPLA1 was mainly located in the nucleus using fluorescence in situ hybridisation, and that it promoted Wnt/β-catenin signalling by binding to desmoplakin using RNA pulldown assay and mass spectrometry. Additionally, luciferase reporter assay revealed that YY1 is the transcription factor of UPLA1 and suppressed the expression of UPLA1 as a transcriptional inhibitor. This finding provides important evidence regarding the two roles of YY1 in cancer. Furthermore, in situ hybridisation assay results showed that UPLA1 was closely related to the prognosis and tumour, node, metastasis (TNM) stage of lung adenocarcinoma. In summary, our results suggest that the novel lncRNA UPLA1 promotes the progression of lung adenocarcinoma and may be used as a prognostic marker, and thus, has considerable clinical significance.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Ting-Ting Wu ◽  
Jun Lu ◽  
Pei-Qiu Zheng ◽  
Shen-Lin Liu ◽  
Jian Wu ◽  
...  

Background.Yiqi Huayu Jiedu Decoction (YHJD) can obviously improve the quality of life of those patients with gastric cancer and prolong their survival.Methods. In vitro experiments, we observe YHJD’s effect on the cells’ proliferation by MTT assay. Cell adhesion assay, wound-healing assay, and Transwell invasion assay serve to detect its influence on cells’ adhesion, migration, and invasion, respectively. Inhibitor (10 μM/L of SB431542) and activator (10 ng/mL of TGF-β) of TGF-β/Smad pathway were used to estimate whether YHJD’s impact on the biological behavior of gastric cancer cells was related to TGF-β/Smad pathway. In in vivo studies, YHJD was administered to the nude mice transplanted with gastric cancer to observe its effect on the tumor. Western blotting and immunohistochemical assay were used to test relevant cytokines of TGF-β/Smad pathway and epithelial-mesenchymal transition (EMT) in MGC-803 cells and the tumor bearing nude mice.Results.YHJD inhibited proliferation, adhesion, migration, and invasion of MGC-803 gastric cancer cells in vitro. In in vivo studies, YHJD reduced the volume of the transplanted tumors. It also enhanced the expression of E-cadherin and decreased the levels of N-cadherin, TGF-β, Snail, and Slug in both MGC-803 cells and the transplanted tumor by western blot assay. The immunohistochemical assay revealed that YHJD raised E-cadherin in the tumors of the mice; on the contrary, the expression of N-cadherin, Twist, vimentin, TGF-βR I, p-Smad2, p-Smad3, Snail, and Slug reduced.Conclusion. YHJD can effectively inhibit the invasion and metastasis of gastric cancer cells. The mechanism may be related to TGF-β/Smad pathway.


2017 ◽  
Vol 44 (6) ◽  
pp. 2158-2173 ◽  
Author(s):  
Nan Hu ◽  
Jun Feng  Yin ◽  
Ze Ji ◽  
Yidong Hong ◽  
Puyuan Wu ◽  
...  

Background/Aims: MicroRNA-21 is an oncogenic miR (oncomiR) frequently elevated in gastric cancer (GC). Overexpression of miR-21 decreases the sensitivity of GC cells to 5-fluorouridine (5-Fu) and trastuzumab, a humanized monoclonal antibody targeting human epidermal growth factor receptor 2 (HER2). Receptor-mediated endocytosis plays a crucial role in the delivery of biotherapeutics including anti-miRNA oligonucleotides (AMOs). This study is a continuation of earlier findings involving poly(ε-caprolactone) (PCL)-poly (ethylene glycol) (PEG) nanoparticles (PEG-PCL NPs), which were coated with trastuzumab to target GC with HER2 receptor over-expression using anti-miRNA-21 (AMO-21) and 5-Fu. Methods: HER-PEG-PCL NPs were prepared by one-step carbodiimide coupling using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAc) and Sulfo-NHS in aqueous phase. Covalent coupling of amino groups at the surface of PEG-PCL with the carboxyl groups of trastuzumab was analyzed by X-ray photoelectron spectroscopy (XPS). AMO-21/5-Fu NPs were formulated by a double-emulsion solvent evaporation technique. The cell line specificity, cellular uptake and AMO-21 delivery were investigated through the rhodamine-B-labeled 6-carboxyfluorescein (FAM)-AMO-21-PEG-PCL NPs coated with or without the antibody in both Her2-positive (NUGC4) and negative GC cells (SGC7901) visualized by fluorescence microscopy. The cytotoxicity of the HER-PEG-PCL NPs encapsulating AMO-21 was evaluated by MTT and apoptosis. Real-time reverse-transcription polymerase chain reaction (RT-PCR) was used to examine miR-21 and phosphatase and tensin homolog (PTEN) and Sprouty2 expression in GC cell lines. The antitumor effects of AMO-21/5-Fu NPs were compared with other groups in xenograft gastric cancer mice. Results: The antibody conjugates significantly enhanced the cellular uptake of NPs. The AMO-21/5-Fu NPs effectively suppressed the target miRNA expression in GC cells, which further up-regulated PTEN and Sprouty2. As a result, the sensitivity of HER2-expressing gastric cancer to trastuzumab and 5-Fu were enhanced both in vitro and in vivo. The approach enhanced the targeting by trastuzumab as well as antibody-dependent cellular cytotoxicity (ADCC) of immune effector cells Conclusions: Taken together, the results provide insight into the biological and clinical potential of targeted AMO-21 and 5-Fu co-delivery using modified trastuzumab for GC treatment.


2012 ◽  
Vol 30 (30_suppl) ◽  
pp. 95-95
Author(s):  
Yelena Yuriy Janjigian ◽  
Christopher M. Gromisch ◽  
Gregory Carbonetti ◽  
Laura H. Tang ◽  
David Paul Kelsen ◽  
...  

95 Background: Gastric cancer is a heterogeneous disease that may be subdivided into distinct subtypes—proximal/gastroesophageal (GE) junction, diffuse/signet ring type, and distal gastric cancer/intestinal type—based on histopathologic and anatomic criteria. Each subtype is associated with unique epidemiology and gene expression. Human epidermal growth factor receptor (HER2) is a validated treatment target in gastric cancer. For patients with metastatic disease, the available cytotoxic agents are applied indiscriminately to all disease subtypes, and with only modest success. The purpose of this study is to establish xenograft models from gastric cancer subtypes to improve our understanding of disease heterogeneity and develop therapies geared for each subtype of gastric cancer. Methods: Fresh specimens obtained from resected primary or metastatic tumors under aseptic conditions. 1 g tumor samples injected SQ into flanks of NSG mice. Xenografts established after 5 passages and maintained by serial transplantation into new mice. Cell cultures established after 5 in vitro passages; cell lines after 15 passages Results: To date, 66 tumor samples have been implanted from which 16 xenografts have been established. The table below summarizes the results. Single-agent afatinib (pan-ErbB inhibitor) demonstrated antitumor activity in an HER2-positive xenograft established from MSKCC patient’s tumor harvested from a skin metastasis. Conclusions: We have established xenograft models of gastric cancer. In vivo testing of afatinib showed a reduction of tumor growth of HER2-positive gastric cancer. These models provide a platform to study potential therapeutics for esophagogastric cancer to further validate difference in their biology and guide rational design of clinical trials. [Table: see text]


Sign in / Sign up

Export Citation Format

Share Document