scholarly journals Pan-ERBB kinase inhibition augments CDK4/6 inhibitor efficacy in oesophageal squamous cell carcinoma

Gut ◽  
2021 ◽  
pp. gutjnl-2020-323276
Author(s):  
Jin Zhou ◽  
Zhong Wu ◽  
Zhouwei Zhang ◽  
Louisa Goss ◽  
James McFarland ◽  
...  

ObjectiveOesophageal squamous cell carcinoma (OSCC), like other squamous carcinomas, harbour highly recurrent cell cycle pathway alterations, especially hyperactivation of the CCND1/CDK4/6 axis, raising the potential for use of existing CDK4/6 inhibitors in these cancers. Although CDK4/6 inhibition has shown striking success when combined with endocrine therapy in oestrogen receptor positive breast cancer, CDK4/6 inhibitor palbociclib monotherapy has not revealed evidence of efficacy to date in OSCC clinical studies. Herein, we sought to elucidate the identification of key dependencies in OSCC as a foundation for the selection of targets whose blockade could be combined with CDK4/6 inhibition.DesignWe combined large-scale genomic dependency and pharmaceutical screening datasets with preclinical cell line models, to identified potential combination therapies in squamous cell cancer.ResultsWe identified sensitivity to inhibitors to the ERBB family of receptor kinases, results clearly extending beyond the previously described minority of tumours with EGFR amplification/dependence, specifically finding a subset of OSCCs with dual dependence on ERBB3 and ERBB2. Subsequently. we demonstrated marked efficacy of combined pan-ERBB and CDK4/6 inhibition in vitro and in vivo. Furthermore, we demonstrated that squamous lineage transcription factor KLF5 facilitated activation of ERBBs in OSCC.ConclusionThese results provide clear rationale for development of combined ERBB and CDK4/6 inhibition in these cancers and raises the potential for KLF5 expression as a candidate biomarker to guide the use of these agents. These data suggested that by combining existing Food and Drug Administration (FDA)-approved agents, we have the capacity to improve therapy for OSCC and other squamous cancer.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenjuan Zha ◽  
Xiaomin Li ◽  
Xiaowei Tie ◽  
Yao Xing ◽  
Hao Li ◽  
...  

AbstractThe long noncoding RNASBF2-AS1 can promote the occurrence and development of many kinds of tumours, but its role in oesophageal squamous cell carcinoma (ESCC) is unknown. We found that SBF2-AS1 was up-regulated in ESCC, and its expression was positively correlated with tumor size (P = 0.0001), but was not related to gender, age, TNM stage, histological grade, and lymphnode metastasis (P > 0.05). It was further found that the higher the expression of SBF2-AS1, the lower the survival rate. COX multivariate analysis showed that the expression of SBF2-AS1 was an independent prognostic factor. Functional experiments show that inhibition of SBF2-AS1 can inhibit the proliferation of ESCC through in vivo and in vitro, and overexpression of SBF2-AS1 can promote the proliferation of ESCC and inhibit its apoptosis. In mechanism, SBF2-AS1/miR-338-3P, miR-362-3P/E2F1 axis are involved in the regulation of ESCC growth. In general, SBF2-AS1 may be used as ceRNA to combine with miR-338-3P and miR-362-3P to up-regulate the expression ofE2F1, and ultimately play a role in promoting cancer. It may be used as a therapeutic target and a biomarker for prognosis.


2020 ◽  
Author(s):  
Yanan Shan ◽  
Sisi Wei ◽  
Xiaohao Xiang ◽  
Suli Dai ◽  
Wenxuan Cui ◽  
...  

Abstract Background:Oesophageal squamous cell carcinoma (ESCC) is a high malignant cancer, which is the most common subtype of oesophageal cancer. Small nucleolar RNAs (snoRNAs) are a group of novel non-coding RNAs that have been found play a key role in various cancers. Methods:The expression of SNORA42 in ESCC samples and cell lines was measured by using real-time PCR and a series of in vitro and in vivo assays were performed to determine the function of SNORA42 in ESCC. Furthermore, RNA pull-down assay combined with Mass Spectrometry was applied to identify the protein that is associated with SNORA42. Silencing SNORA42 in ESCC cell followed by Next-Generation mRNA Sequencing was used to investigate the signaling pathway regulated by SNORA42.Results: We identified H/ACA box snoRNA42 (SNORA42) wasupregulated in ESCC and had the potential to be applied as a prognostic marker. Specifically, overexpression of SNORA42 promotedESCCprogressionin vitro and in vivo, whereas knockdown of SNORA42 had opposite effects. We identified SNORA42 interacted with DHX9, which was up-regulated in ESCC and had a positive correlation with the expression of SNORA42. Furthermore, the promotion of SNORA42 on ESCC phenotypes can be reversed by knockdown of DHX9. Mechanically, SNORA42 promoted DHX9 expression by attenuating DHX9 transports into cytoplasm, to protect DHX9 from being ubiquitinated and degraded. From KEGG analysis of Next-Generation Sequencing, the NF-κB pathway was one of the most regulated pathways by SNORA42. SNORA42 enhanced phosphorylation of p65 and this effect could be reversed by NF-κB inhibitor, BAY11-7082. Moreover, SNORA42 activated NF-κB signaling through promotingthe transcriptional co-activator DHX9 interacted with p-p65, inducingNF-κB downstream genes expression. Conclusions:These findings suggest that SNORA42 is up-regulated in ESCC and promotes ESCC developments,partly via interacting with DHX9 and triggering SNORA42/DHX9/p65 axis.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Feng Wang ◽  
Chaoqi Zhang ◽  
Hong Cheng ◽  
Chengming Liu ◽  
Zhiliang Lu ◽  
...  

AbstractOesophageal squamous cell carcinoma (ESCC) has a relatively unfavourable prognosis due to metastasis and chemoresistance. Our previous research established a comprehensive ESCC database (GSE53625). After analysing data from TCGA database and GSE53625, we found that PLEK2 predicted poor prognosis in ESCC. Moreover, PLEK2 expression was also related to the overall survival of ESCC patients undergoing chemotherapy. Repression of PLEK2 decreased the proliferation, migration, invasion and chemoresistance of ESCC cells in vitro and decreased tumorigenicity and distant metastasis in vivo. Mechanistically, luciferase reporter assay and chromatin immunoprecipitation assay suggested that TGF-β stimulated the process that Smad2/3 binds to the promoter sequences of PLEK2 and induced its expression. RNA-seq suggested LCN2 might a key molecular regulated by PLEK2. LCN2 overexpression in PLEK2 knockdown ESCC cells reversed the effects of decreased migration and invasion. In addition, TGF-β induced the expression of LCN2, but the effect disappeared when PLEK2 was knockdown. Moreover, AKT was phosphorylated in all regulatory processes. This study detected the major role of PLEK2 in driving metastasis and chemoresistance in ESCC by regulating LCN2, which indicates the potential use of PLEK2 as a biomarker to predict prognosis and as a therapeutic target for ESCC.


1994 ◽  
Vol 111 (3) ◽  
pp. 189-196 ◽  
Author(s):  
C SNYDERMAN ◽  
I KLAPAN ◽  
M MILANOVICH ◽  
D HEO ◽  
R WAGNER ◽  
...  

Author(s):  
Zhigeng Zou ◽  
Wei Zheng ◽  
Hongjun Fan ◽  
Guodong Deng ◽  
Shih-Hsin Lu ◽  
...  

Abstract Background Cancer stem cells (CSCs) are related to the patient’s prognosis, recurrence and therapy resistance in oesophageal squamous cell carcinoma (ESCC). Although increasing evidence suggests that aspirin (acetylsalicylic acid, ASA) could lower the incidence and improve the prognosis of ESCC, the mechanism(s) remains to be fully understood. Methods We investigated the role of ASA in chemotherapy/chemoprevention in human ESCC cell lines and an N-nitrosomethylbenzylamine-induced rat ESCC carcinogenesis model. The effects of combined treatment with ASA/cisplatin on ESCC cell lines were examined in vitro and in vivo. Sphere-forming cells enriched with putative CSCs (pCSCs) were used to investigate the effect of ASA in CSCs. Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) was performed to determine the alterations in chromatin accessibility caused by ASA in ESCC cells. Results ASA inhibits the CSC properties and enhances cisplatin treatment in human ESCC cells. ATAC-seq indicates that ASA treatment results in remarkable epigenetic alterations on chromatin in ESCC cells, especially their pCSCs, through the modification of histone acetylation levels. The epigenetic changes activate Bim expression and promote cell death in CSCs of ESCC. Furthermore, ASA prevents the carcinogenesis of NMBzA-induced ESCC in the rat model. Conclusions ASA could be a potential chemotherapeutic adjuvant and chemopreventive drug for ESCC treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chao Jing ◽  
Dandan Liu ◽  
Qingchuan Lai ◽  
Linqi Li ◽  
Mengqian Zhou ◽  
...  

Abstract Background Deubiquitinating enzymes (DUBs) play critical roles in various cancers by modulating functional proteins post-translationally. Previous studies have demonstrated that DUB Josephin Domain Containing 1 (JOSD1) is implicated in tumor progression, however, the role and mechanism of JOSD1 in head and neck squamous cell carcinoma (HNSCC) remain to be explored. In this study, we aimed to identify the clinical significance and function of JOSD1 in HNSCC. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were analyzed to find novel DUBs in HNSCC. Immunohistochemistry assay was performed to determine the expression of JOSD1 in our cohort of 42 patients suffered with HNSCC. Kaplan–Meier analysis was used to identify the correlation between JOSD1 and the prognosis of HNSCC patients. The regulation of BRD4 on JOSD1 was determined by using pharmacological inhibition and gene depletion. The in vitro and in vivo experiments were conducted to elucidate the role of JOSD1 in HNSCC. Results The results of IHC showed that JOSD1 was aberrantly expressed in HNSCC specimens, especially in the chemoresistant ones. The overexpression of JOSD1 indicated poor clinical outcome of HNSCC patients. Moreover, JOSD1 depletion dramatically impaired cell proliferation and colony formation, and promoted cisplatin-induced apoptosis of HNSCC cells in vitro. Additionally, JOSD1 suppression inhibited the tumor growth and improved chemosensitivity in vivo. The epigenetic regulator BRD4 contributed to the upregulation of JOSD1 in HNSCC. Conclusions These results demonstrate that JOSD1 functions as an oncogene in HNSCC progression, and provide a promising target for clinical diagnosis and therapy of HNSCC.


Author(s):  
Xuechao Jia ◽  
Chuntian Huang ◽  
Yamei Hu ◽  
Qiong Wu ◽  
Fangfang Liu ◽  
...  

Abstract Background Esophageal squamous cell carcinoma (ESCC) is an aggressive and lethal cancer with a low 5 year survival rate. Identification of new therapeutic targets and its inhibitors remain essential for ESCC prevention and treatment. Methods TYK2 protein levels were checked by immunohistochemistry. The function of TYK2 in cell proliferation was investigated by MTT [(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and anchorage-independent cell growth. Computer docking, pull-down assay, surface plasmon resonance, and kinase assay were used to confirm the binding and inhibition of TYK2 by cirsiliol. Cell proliferation, western blot and patient-derived xenograft tumor model were used to determine the inhibitory effects and mechanism of cirsiliol in ESCC. Results TYK2 was overexpressed and served as an oncogene in ESCC. Cirsiliol could bind with TYK2 and inhibit its activity, thereby decreasing dimer formation and nucleus localization of signal transducer and activator of transcription 3 (STAT3). Cirsiliol could inhibit ESCC growth in vitro and in vivo. Conclusions TYK2 is a potential target in ESCC, and cirsiliol could inhibit ESCC by suppression of TYK2.


2015 ◽  
Vol 35 (1) ◽  
pp. 89-98 ◽  
Author(s):  
LIN QUE ◽  
DAN ZHAO ◽  
XIU-FA TANG ◽  
JI-YUAN LIU ◽  
XIANG-YU ZHANG ◽  
...  

2016 ◽  
Vol 17 (3) ◽  
pp. 272 ◽  
Author(s):  
Masaaki Yasukawa ◽  
Hisako Fujihara ◽  
Hiroaki Fujimori ◽  
Koji Kawaguchi ◽  
Hiroyuki Yamada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document