scholarly journals MiR-3150b-3p inhibits the proliferation and invasion of cervical cancer cells by targeting TNFRSF11a

2020 ◽  
Vol 68 (6) ◽  
pp. 1166-1170
Author(s):  
Zhijuan Yu ◽  
Liguo Wang ◽  
Xiujuan Li

The objective of this study was to determine the role of miR-3150b-3p in the cervical cancer (CC) progression. Real-time PCR and western blot analysis were conducted to test the expression of miR-3150b-3p, TNFRSF11a and p38 mitogen-activated protein kinase (MAPK) signaling pathway. The interaction between miR-3150b-3p and TNFRSF11a was verified by luciferase assay. Cell proliferation, migration and invasion were determined by CCK-8, wound healing and Transwell assays. In this study, we showed that miR-3150b-3p was significantly downregulated in CC cell lines. Additionally, miR-3150b-3p markedly attenuated the proliferation, migration and invasion of HeLa and SiHa cells. Moreover, we identified TNFRSF11a to be a novel target of miR-3150b-3p in CC cells. Enforced expression of TNFRSF11a abolished the antitumor effect of miR-3150b-3p. Besides, miR-3150b-3p was involved in the regulation of the p38 MAPK signaling pathway. In conclusion, our data suggested that miR-3150b-3p directly targets TNFRSF11a to inactivate the p38 MAPK signaling pathway, thus implicating miR-3150b-3p in the regulation of CC cell growth.

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Wei Zhang ◽  
Feng Liang ◽  
Qingfeng Li ◽  
Hong Sun ◽  
Fei Li ◽  
...  

Abstract Background Hepatoblastoma (HB) is identified to be the most common liver malignancy which occurs in children. Long non-coding RNAs (lncRNAs) have been implicated in numerous biological processes and diseases, including HB. LncRNA MIR205 host gene (MIR205HG) has been investigated in multiple cancers, however, its role in HB remains to be elucidated. Methods MIR205HG expression was analyzed by RT-qPCR. EdU, colony formation and transwell assays were implemented to measure the biological function of MIR205HG on the progression of HB. Mechanism assays were carried out to probe into the underlying mechanism of MIR205HG in HB cells. Results MIR205HG was significantly overexpressed in HB. Moreover, MIR205HG inhibition suppressed the proliferative, migratory and invasive capacities of HB cells. Furthermore, MIR205HG competitively bound to microRNA-514a-5p (miR-514a-5p) and targeted mitogen-activated protein kinase 9 (MAPK9) to stimulate mitogen activated protein kinase (MAPK) signaling pathway. Besides, MIR205HG also served as a sponge for microRNA-205-5p (miR-205-5p) to activate the PI3K/AKT signaling pathway. Conclusion MIR205HG drives the progression of HB which might provide an efficient marker and new therapeutic target for HB.


Blood ◽  
2001 ◽  
Vol 98 (3) ◽  
pp. 667-673 ◽  
Author(s):  
Valérie Marin ◽  
Catherine Farnarier ◽  
Sandra Grès ◽  
Solange Kaplanski ◽  
Michael S.-S. Su ◽  
...  

Abstract Thrombin, the terminal serine protease in the coagulation cascade, is a proinflammatory molecule in vivo and induces endothelial activation in vitro. The cellular signaling mechanisms involved in this function are unknown. The role of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in thrombin-induced chemokine production was studied. Phosphorylation of both p38 MAPK and its substrate, ATF-2, was observed in human umbilical vein endothelial cells (HUVECs) stimulated with thrombin, with a maximum after 5 minutes of stimulation. Using the selective p38 MAPK inhibitor SB203580, there was a significant decrease in thrombin-induced interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) protein production and messenger RNA steady-state levels. In addition, SB203580 decreased IL-8 and MCP-1 production induced by the thrombin receptor-1 agonist peptide (TRAP), suggesting functional links between the thrombin G protein–coupled receptor and the p38 MAPK pathway. Furthermore, endothelial activation in the presence of SB203580 decreased the chemotactic activity of thrombin-stimulated HUVEC supernatant on neutrophils and monocytic cells. In contrast, the p42/p44 MAPK pathway did not appear to be involved in thrombin- or TRAP-induced endothelial chemokine production, because there was no reduction in the presence of the p42/p44-specific inhibitor PD98059. These results demonstrate that the p38 rather than p42/44 MAPK signaling pathway plays an important role in thrombin-induced endothelial proinflammatory activation and suggest that inhibition of p38 MAPK may be an interesting target for anti-inflammatory strategies in vascular diseases combining thrombosis and inflammation.


2020 ◽  
Vol 10 (2) ◽  
pp. 163-168
Author(s):  
Sheng Wang ◽  
Zhonghan Min ◽  
Run Gu ◽  
Zhongwei Yu ◽  
Pingquan Chen ◽  
...  

During OP bone metabolism, activated MAPK signaling can promote the proliferation and differentiation of osteoclasts. miRNAs involve in bone diseases. Our study aimed to evaluate miR-200c’s effect on ERK/MAPK signaling pathway in OP. miR-200c expression in OP mice and normal mice was detected by qPCR. BMSCs were cultured and transfected with siRNA to establish a miR-200c knockout model. Flow cytometry was used to detect cell apoptosis and ERK/MAPK signaling protein was detected by Western blot. miR-200c expression in OP mice was significantly lower than that in normal mice. Bone marrow mesenchymal stem cells (BMSCs) contain a large amount of siRNA particles under a fluorescence microscope. siRNA transfection can effectively inhibit miR-200c expression without difference of BMSCs apoptosis between miR-200c siRNA group and NC group. However, ERK1/2 and P38 expression in experimental group were significantly higher than those in NC siRNA group with reduced ALP activity. In addition, BMSCs osteogenic differentiation was further diminished when miR-200c expression was inhibited. miR-200c expression is lower in OP mice. miR-200c siRNA inhibits BMSCs osteogenic differentiation via ERK/MAPK signaling, thereby promoting OP progression.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Li-qian Zhang ◽  
Rong-wei Lv ◽  
Xiang-dong Qu ◽  
Xian-jun Chen ◽  
Hong-sheng Lu ◽  
...  

Aloesin is an active constituent of the herb aloe vera and plays a crucial role in anti-inflammatory activity, ultraviolet protection, and antibacterium. We investigated the role and possible mechanisms of aloesin in the cell growth and metastasis of ovarian cancer. It was found that aloesin inhibited cell viability and cell clonality in a dose-dependent manner. It arrests the cell cycle at the S-phase and induced apoptosis in SKOV3 cells. In an in vivo experiment, it was observed that aloesin inhibited tumor growth. Moreover, it inhibited migration and invasion of cancer in SKOV3 cells. Interestingly, members from the mitogen-activated protein kinase (MAPK) signaling family became less phosphorylated as the aloesin dose increased. This suggests that aloesin exerts its anticancer effect through the MAPK signaling pathway. Our data also highlights the possibility of using aloesin as a novel therapeutic drug for ovarian cancer treatment.


2019 ◽  
Author(s):  
Yeojin Hong ◽  
Thu Thao Pham ◽  
Jiae Lee ◽  
Hyun S. Lillehoj ◽  
Yeong Ho Hong

Abstract Background Defensins are antimicrobial peptides composed of three conserved disulfide bridges, a β-sheet, and both hydrophobic and cationic amino acids. In this study, we aimed to demonstrate the immunomodulation role of avian β-defensin 8 (AvBD8) in a chicken macrophage cell line.Results Chicken AvBD8 stimulated the expression of proinflammatory cytokines (interleukin (IL)-1β, interferon-γ, and IL-12p40) and chemokines (CCL4, CXCL13, and CCL20) in macrophages. Furthermore, by western blotting and immunocytochemistry, we confirmed that AvBD8 activated the mitogen-activated protein kinase (MAPK) signaling pathway via extracellular regulated kinases 1/2 (ERK1/2) and p38 signaling molecules.Conclusion Overall, AvBD8 plays a crucial role in host defense as not only an antimicrobial peptide, but also an immunomodulator by activating the MAPK signaling pathway and inducing the expression of proinflammatory cytokines and chemokines.


Sign in / Sign up

Export Citation Format

Share Document