712 SBT6290, a systemically administered Nectin-4-directed TLR8 ImmunoTAC (TM) therapeutic, is a potent human myeloid cell agonist for the treatment of Nectin-4-expressing tumors

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A754-A754
Author(s):  
Heather Metz ◽  
Ty Brender ◽  
Brenda Stevens ◽  
Damion Winship ◽  
Jamie Brevik ◽  
...  

BackgroundSBT6290 is a novel therapeutic comprised of a selective TLR8 agonist conjugated to a Nectin-4-specific monoclonal antibody, designed for systemic delivery and tumor-localized activation of myeloid cells. Nectin-4 is a cell surface adhesion molecule that is overexpressed in multiple solid tumor types including triple negative breast, head and neck, lung, and urothelial cancers, with limited expression in normal tissues. Many solid tumors, including those expressing Nectin-4, are resistant to immunotherapy due to immune-suppressive mechanisms, loss of HLA, low neoantigen availability, and/or minimal T cell infiltrates. These tumors, however, are often replete with myeloid cells. Activation of these cells has emerged as a promising approach in overcoming resistance mechanisms to current cancer immunotherapies. TLR8 is highly expressed in myeloid cell types prevalent in human tumors, including conventional DCs and macrophages. Agonism of TLR8 in human myeloid cells activates a broad spectrum of anti-tumor immune mechanisms, including proinflammatory cytokine production, repolarization of suppressive myeloid cells, and the priming of CTL responses. Here, we show that SBT6290 potently activates human myeloid cells in a Nectin-4-dependent manner and that a mouse surrogate confers single agent anti-tumor activity in preclinical studies. These data support the development of SBT6290 for the treatment of patients with Nectin-4-expressing tumors.MethodsSBT6290 activity was characterized in vitro using co-culture systems consisting of human immune cells and Nectin-4-expressing tumor cells. The in vivo efficacy of the SBT6290 surrogate was evaluated as a single agent in mouse tumor models expressing Nectin-4.ResultsStudies with human immune cells show that SBT6290 potently induces multiple anti-tumor immune activities including proinflammatory cytokine and chemokine production, inflammasome activation, direct activation of DCs and indirect T and NK cell cytolytic activity. This activity requires the presence of Nectin-4 expressing tumor cells and the engagement of Fc gamma receptors on the surface of the myeloid cells by the conjugate to facilitate delivery of SBT6290 into myeloid cells. Notably, SBT6290 is >100 fold more potent than the free, unconjugated TLR8 agonist. Systemic administration of a SBT6290 surrogate in mice results in robust single agent efficacy in tumor models intrinsically resistant to checkpoint blockade, including the EMT6 model engineered to express human Nectin-4.ConclusionsThe preclinical data described here show the potential for SBT6290 to drive robust, single agent anti-tumor responses and support the clinical development of SBT6290 for patients with Nectin-4 expressing tumors.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3110-3110
Author(s):  
Heather Metz ◽  
Monica Childs ◽  
Jamie Brevik ◽  
Damion Winship ◽  
Ty Brender ◽  
...  

3110 Background: Solid tumors are replete with myeloid cells which, when activated, drive potent anti-tumor responses. Clinical development of systemically administered myeloid cell agonists, however, has been hindered by acute toxicities due to peripheral activation of the targeted cell types. Intratumoral administration, the route of delivery typically used for innate immune/myeloid cell agonists, is limited by tumor accessibility and a dependence on abscopal responses. A systemically delivered myeloid cell agonist with tumor-localized activity has the potential to overcome challenges encountered with other innate immune/myeloid cell agonists in clinical development. Methods: SBT6050 is a novel therapeutic comprised of a potent toll-like receptor (TLR) 8 agonist payload conjugated to a HER2-directed monoclonal antibody. Delivery of the payload into the endosome of human myeloid cells, where TLR8 resides, requires the co-engagement of HER2 on tumor cells and Fc gamma receptor on human myeloid cells. Thus, SBT6050 is designed for systemic delivery and tumor-targeted activation of human myeloid cells. Results: Studies with human immune cells show that SBT6050 potently induces, in a HER2-dependent manner, multiple anti-tumor immune activities due to its direct activation of myeloid cells and the subsequent induction of T and NK cell cytolytic activity. SBT6050 is designed to activate human myeloid cells only in the presence of HER2-positive tumor cells with moderate (2+ by IHC) or high (3+ by IHC) expression levels. Tumor-localized activity has been demonstrated in mouse models using a SBT6050 mouse surrogate. Systemic delivery results in robust single agent efficacy in multiple mouse tumor models, even those engineered to lack T cells, without accompanying peripheral cytokine production. Trastuzumab and SBT6050 bind to distinct epitopes on HER2 and enhanced activity is observed when the two agents are combined. Conclusions: SBT6050 is a systemically administered, tumor-targeted myeloid cell agonist that demonstrates single agent efficacy in multiple mouse tumor models without peripheral cytokine production. A first-in-human study with SBT6050 is expected to begin this year for patients with HER2-expressing solid tumors.


Author(s):  
Ronan J. Kelly

PD-L1 upregulation occurs in approximately 40% of gastroesophageal cancers. However, unlike other solid tumors, there is minimal PD-L1 expressed on the cancer cells; rather, expression occurs predominantly on infiltrating myeloid cells. Preliminary clinical data involving single-agent PD-1/PD-L1 inhibitors in metastatic gastroesophageal cancer have reported response rates of 22%–27% for patients with PD-L1+ tumors and 10%–17% for unselected patients. The phase III ONO-4538-12 (ATTRACTION 2) trial has demonstrated an improved overall survival for nivolumab compared with placebo for patients with heavily pretreated gastric cancer. In the future, we will need better biomarkers to select those most likely to respond and/or identify patients who may need combination immunotherapeutics or alternate strategies. A number of subsets of gastric cancer with different immune signatures, most notably tumors positive for Epstein-Barr virus and microsatellite instability, have been identified, with approximately 50% and 94% PD-L1+ staining seen on tumor cells and immune cells in the EBV subtype and approximately 33% and 45% PD-L1+ staining seen on tumor cells and immune cells in MSI high tumors. Both subtypes demonstrate PD-L1+ immune cells with tumor-infiltrating patterns, unlike the more commonly seen PD-L1+ immune cells at the invasive margin. PD-L2 expression has been reported in 52% of esophageal adenocarcinomas but little is known about the expression of other immune checkpoints. Additional factors that suggest gastroesophageal cancers may respond to checkpoint inhibition include the high somatic mutation burden and the link with chronic inflammation. Here we provide a comprehensive review of the checkpoint inhibitor data published to date in advanced esophagogastric cancers and rationalize how the immune microenvironment in these diverse tumors can explain response or resistance to immunotherapeutics.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A884-A884
Author(s):  
Li Peng ◽  
Lizhi Cao ◽  
Sujata Nerle ◽  
Robert LeBlanc ◽  
Abhishek Das ◽  
...  

BackgroundSialoglycans, a type of glycans with a terminal sialic acid, have emerged as a critical glyco-immune checkpoint that impairs antitumor response by inhibiting innate and adaptive immunity. Upregulation of sialoglycans on tumors has been observed for decades and correlates with poor clinical outcomes across many tumor types. We previously showed that targeted desialylation of tumors using a bifunctional sialidase x antibody molecule, consisting of sialidase and a tumor-associated antigen (TAA)-targeting antibody, has led to robust single-agent efficacy in mouse tumor models. In addition to tumor cells, most immune cells present substantially more abundant sialoglycans than non-hematological healthy cells, which may also contribute to immunosuppression. Therefore, we studied the impact of immune cell desialylation and evaluated the therapeutic potential of a newly developed sialidase-Fc fusion (Bi-Sialidase), which lacks a TAA-targeting moiety and consists of engineered human neuraminidase 2 (Neu2) and human IgG1 Fc region, in preclinical mouse tumor models.MethodsThe first generation Neu2 variant was further optimized to improve titers and stability to constructed Bi-Sialidase. Bi-Sialidase’s desialylation potency and impact on immune responses were studied in vitro using various human immune functional assays, including T-cell activation, allogeneic mixed lymphocyte reaction, antibody-dependent cellular cytotoxicity, macrophages polarization/activation, neutrophil activation, and peripheral blood mononuclear cell (PBMC) cytokine release assays. We evaluated its antitumor efficacy in mouse tumor models. Bi-Sialidase’s safety profile was characterized by conducting rat and non-human primate (NHP) toxicology studies.ResultsThe optimized Bi-Sialidase achieved a titer of 2.5 g/L from a 15-day fed-batch Chinese hamster ovary cell culture; in contrast, the wild-type and first-generation Neu2 had no production or a low titer (<0.1 g/L) under similar conditions, respectively. We demonstrated that Bi-Sialidase led to dose-dependent desialylation of immune cells and potentiated T-cell immunity, without impacting NK, macrophage, or neutrophil activation by desialylating immune cells. Activated and exhausted T cells upregulated surface sialoglycans and Bi-Sialidase-mediated desialylation reinvigorated exhausted-like T cells as measured by IFNg production. Bi-Sialidase treatment also enhanced DC priming and activation of naïve T cells by desialylating both T cells and DCs. Furthermore, Bi-Sialidase showed single-agent antitumor activity in multiple mouse tumor models, including MC38, CT26, A20, and B16F10. Importantly, Bi-Sialidase did not cause cytokine release in human PBMC assays and was tolerated to up to 100 mg/kg in rats and NHPs, demonstrating a wide safety margin.ConclusionsBi-Sialidase with an optimized Neu2 offers a novel immunomodulatory approach to enhancing T-cell immunity by desialylating immunosuppressive sialoglycans for cancer treatment.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi94-vi95
Author(s):  
Tyler Miller ◽  
Chadi El Farran ◽  
Julia Verga ◽  
Charles Couturier ◽  
Zeyu Chen ◽  
...  

Abstract Recent breakthroughs in immunotherapy have revolutionized treatment for many types of cancer, but unfortunately trials of these therapies have failed to provide meaningful life-prolonging benefit for brain tumor patients, potentially due to abundant immunosuppressive myeloid cells in the tumor. Our ultimate goal is to reprogram immunosuppressive tumor associated myeloid cells to an antitumor state to enable effective immunotherapy. Towards this goal, we have deeply characterized the immune microenvironment of more than 50 primary high and low grade gliomas using high-throughput single-cell RNA-sequencing to reveal recurrent myeloid cell states and immunosuppressive programs across IDH1 wild-type and mutant tumors. We have also established a brain tumor organoid model from primary patient tissue that maintains all of the tumor microenvironment, including myeloid and other immune cells. We utilize the this model to functionally test data-driven reprogramming strategies and understand how they impact the states of tumor and immune cells in the ex vivo human tumor microenvironment.


Blood ◽  
2011 ◽  
Vol 118 (18) ◽  
pp. 5050-5059 ◽  
Author(s):  
Alexander Scholz ◽  
Victoria Lang ◽  
Reinhard Henschler ◽  
Marcus Czabanka ◽  
Peter Vajkoczy ◽  
...  

Abstract In human inflammatory diseases, we identified endothelial angiopoietin-2 (Ang-2) expression to be strongly associated with inflammations mediated by myeloid cells but not lymphocytes. To identify the underlying mechanism, we made use of a transgenic mouse model with inducible endothelial cell-specific expression of Ang-2. In this model, in the absence of inflammatory stimuli, long-term expression of Ang-2 led to a time-dependent accumulation of myeloid cells in numerous organs, suggesting that Ang-2 is sufficient to recruit myeloid cells. In models of acute inflammation, such as delayed-type hypersensitivity and peritonitis, Ang-2 transgenic animals showed an increased responsiveness. Intravital fluorescence video microscopy revealed augmented cell adhesion as an underlying event. Consequently, we demonstrated that Ang-2 is able to induce strong monocyte adhesion under shear in vitro, which could be blocked by antibodies to β2-integrin. Taken together, our results describe Ang-2 as a novel, endothelial-derived regulator of myeloid cell infiltration that modulates β2-integrin–mediated adhesion in a paracrine manner.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
David R Sweet ◽  
Neelakantan T Vasudevan ◽  
Liyan Fan ◽  
Chloe E Booth ◽  
Komal S Keerthy ◽  
...  

Abstract Derangement in systemic metabolic homeostasis is tightly associated with widespread activation of resident and circulating immune cells, a phenomenon known as ‘metaflammation’. Numerous studies have explored the role of tissue resident and circulating macrophages in contributing to metaflammation, obesity, and their sequelae; however, there is a dearth of information regarding targetable transcriptional regulators of the genesis and persistence of metabolic disease. Here, we identify myeloid Krüppel-like factor 2 (KLF2) as a novel regulator of metabolic disease. Previous reports demonstrate that KLF2 serves as a critical regulator of myeloid cell quiescence and is downregulated in numerous acute and chronic inflammatory states. Specifically in the context of chronic metaflammation, we note that KLF2 expression is decreased in circulating immune cells of obese patients and in adipose tissue macrophages of high fat diet (HFD) fed mice, which is consistent with the hypothesis that KLF2 regulates metaflammation. To explore this further, we utilized mice with myeloid cell-specific deletion of KLF2 (K2KO) which exhibit accelerated obesity and insulin resistance. K2KO mice have widespread central (i.e. CNS) and peripheral metaflammation both in the basal and HFD-stimulated states. To discern whether the effect of myeloid deletion of KLF2 on metabolism is due to deletion in microglia in the feeding centers of the hypothalamus or in peripheral immune cells, bone marrow chimeras with head shielding were created. 50% reconstitution of circulating immune cells with K2KO cells in wildtype (WT) mice was sufficient to maintain the metabolic disease phenotype, while mice with K2KO microglia + WT circulating cells had only slightly improved outcomes compared to K2KO mice. Conversely, ablation of microglia in K2KO mice using PLX5622 formulated in HFD also successfully attenuated the aberrant feeding behavior, weight gain, and glucose dyshomeostasis seen in K2KO mice. Together, these data demonstrate a role for loss of KLF2 in hematopoietic and CNS resident cells in causing metabolic disease. Given that myeloid KLF2 expression decreases under metabolic stress in WT mice and humans, we sought to explore whether maintenance of KLF2 expression in these cells would be protective against diet-induced metabolic disease. Indeed, mice with myeloid-specific overexpression of KLF2 demonstrated a markedly improved metabolic phenotype when challenged with HFD, providing evidence that targeting KLF2 expression in myeloid cells may prove to be a therapeutic option against metaflammation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 726-726
Author(s):  
Asahi Ito ◽  
Takashi Ishida ◽  
Atae Utsunomiya ◽  
Fumihiko Sato ◽  
Fumiko Mori ◽  
...  

Abstract Abstract 726 There are no suitable small animal models to evaluate human antibody-dependent cellular cytotoxicity (ADCC) in vivo, due to species incompatibilities, and it is a current crucial problem in the field of human ADCC research. To overcome this, we have established “humanized mice,” in which human immune cells from healthy individuals function as ADCC effector cells against allogeneic tumor cell lines, using NOD/Shi-scid, IL-2Rγnull (NOG) mice as recipients. In this model, the chimeric anti-CCR4 monoclonal antibody (mAb), KM2760, the Fc region of which is defucosylated to highly enhance ADCC, showed potent antitumor activity by human ADCC against CCR4 expressing tumor cell lines. In addition, KM2760 significantly increased the number of tumor-infiltrating CD56-positive NK cells which mediate ADCC, and reduced the number of tumor-infiltrating FOXP3-positive regulatory T (Treg) cells in the tumor bearing humanized mice. These observations indicate that KM2760 could be an ideal treatment modality for many different cancers, not only to directly kill CCR4-expressing tumor cells, but also to overcome the suppressive effect of Treg cells on the host immune response to tumor cells. Using this humanized mouse model, we now have the opportunity to perform more appropriate preclinical evaluation of many types of mAb based immunotherapy, although in the initial study, we could not completely exclude nonspecific allogeneic immune responses because target and effector cells were obtained from different individuals. In addition, susceptibility to immunotherapy is likely to be different in established cell lines and primary tumor cells isolated directly ex vivo from patients, with the latter certainly being more relevant for evaluation of immunotherapeutic agents. To overcome the subsequent problems, we have established a primary human tumor bearing NOG mouse model, in which autologous human immune cells are engrafted and mediate ADCC but in which endogenous murine cells are unable to mediate ADCC. In the present study, we used NOG mice bearing primary adult T-cell leukemia/lymphoma (ATLL) cells. We report significant antitumor activity in vivo associated with robust ADCC mediated by autologous effector cells from the same patients. The present study is the first to report a mouse model in which a potent antitumor effect of the therapeutic mAb against primary tumor cells is mediated by autologous human immune cells. Human autologous ADCC in mice in vivo was confirmed by the depletion of human immune cells before ATLL PBMC inoculation. In addition, NOG mice bearing primary ATLL cells presented features identical with patients with ATLL. In conclusion, this approach makes it possible to model the human immune system active in mAb based immunotherapy in vivo, and thus to perform more appropriate preclinical evaluations of novel therapeutic mAb. Furthermore, the potent ADCC mediated by defucosylated anti-CCR4 mAb, observed here in vivo in humanized mice, will be exploited in clinical trials in the near future. Disclosures: No relevant conflicts of interest to declare.


Science ◽  
2021 ◽  
pp. eabf7844
Author(s):  
Andrea Cugurra ◽  
Tornike Mamuladze ◽  
Justin Rustenhoven ◽  
Taitea Dykstra ◽  
Giorgi Beroshvili ◽  
...  

The meninges are a membranous structure enveloping the central nervous system (CNS) that host a rich repertoire of immune cells mediating CNS immune surveillance. Here, we report that the meninges contain a pool of monocytes and neutrophils supplied not from the blood, but by adjacent skull and vertebral bone marrow. Under pathological conditions, including spinal cord injury and neuroinflammation, CNS-infiltrating myeloid cells can originate from brain borders and display transcriptional signatures distinct from their blood-derived counterparts. Thus, CNS borders are populated by myeloid cells from adjacent bone-marrow niches, strategically placed to supply innate immune cells under homeostatic and pathological conditions. These findings call for reinterpretation of immune-cell infiltration into the CNS during injury and autoimmunity and may inform future therapeutic approaches harnessing meningeal immune cells.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii52-iii52
Author(s):  
M Shevtsov ◽  
S Stangl ◽  
Y Marchenko ◽  
L Yakovleva ◽  
V Ryzhov ◽  
...  

Abstract BACKGROUND Magnetic drug targeting by employing external magnetic fields represents a promising approach for treatment of glioblastoma. To increase the anti-tumor therapeutic effect magnetic nanocarriers could be functionalized with tumor-targeting bioligands such as granzyme B (GrB). The serine protease GrB that is produced as an effector molecule by activated NK and T cells can induce specific tumor cell apoptosis. MATERIAL AND METHODS The targeting potential of the dextran-coated superparamagnetic iron oxide nanoparticles conjugated with GrB (GrB-SPIONs) was assessed in glioblastoma cells (U87, C6, GL261) by flow cytometry, confocal and electron microscopies. Magnetic field strength (320 mT) in the models of U87 glioblastoma in NMRI nu/nu mice and C6 glioma in Wistar rats was achieved by employing NdFeB cylindrical ferromagnet. The irradiation of the implanted tumors was performed using the CT-image guided Small Animal Radiation Research Platform (SARRP). Accumulation of the nanoparticles was assessed in paraffine-embedded specimens employing Prussian blues staining. Sections were additionally analyzed by IHC for apoptosis (caspase 3). RESULTS Synthesized GrB-SPIONs incorporated into the cytoplasm of tumor cells via the endolysosomal pathway and induced apoptosis in a dose-dependent manner. Intravenous injection of GrB-SPIONs resulted in the glioma-specific retention of the nanoparticles as was shown by high-field (11 T) magnetic resonance imaging and biodistribution studies (NLR-M2 measurements). Magnetic targeting of the nanoparticles in vivo drastically enhanced the accumulation of nanoparticles to the location of the magnet. Thus the local retention of nanoparticles was 12.3-fold higher as compared to application of GrB-SPIONs without external magnetic field. The presence of granzyme B on SPIONs has been shown to promote tumor cells death (IHC staining for caspase 3) and significantly increased overall survival. A combination of nanoparticle treatment with a single radiation dose (10 Gy) significantly prolonged the survival of rats as compared to animals treated only with magnetic targeting of GrB-SPIONs or radiotherapy alone (P<0.001). CONCLUSION Single-agent therapy with GrB-SPIONs demonstrated an impressive increase in overall survival of tumor-bearing animals. Combinatorial regimen employing magnetic targeting and stereotactic radiotherapy further enhanced the therapeutic potential of magnetic conjugates.


2020 ◽  
Author(s):  
Thi Tran ◽  
Bruno Esposito ◽  
Melanie Montabord ◽  
Jaouen Tran Rajau ◽  
Nadege Gruel ◽  
...  

Abstract Aims: Myeloid inflammatory cells are recruited to the tumor microenvironment and subsequently educated in situ to acquire a pro-invasive, pro-angiogenic and immunosuppressive phenotype. Components of the metabolic syndrome are known to aggravate tumorigenesis in part through myeloid cell activation. We hypothesized that consumption of a high fat/high cholesterol pro-atherogenic diet and its associated low-grade inflammation would accelerate the initiation of solid tumors. Methods and results: Here, we show that two-week feeding of wildtype C57BL/6J mice with a pro-atherogenic diet increases the pool of circulating inflammatory Ly-6Chi monocytes available for initial melanoma development and amplifies the accumulation of myeloid cells within the tumor microenvironment, in an IL-1β-dependent manner. Under pro-atherogenic diet feeding, myeloid cells display heightened pro-angiogenic, pro-inflammatory and immunosuppressive activities. Within the first days after tumor implantation, myeloid cells become the main producer of VEGF-A in the tumor. Depletion of Ly-6Chi monocytes in mice fed with a pro-atherogenic diet limits immune cell infiltration in the tumor, and inhibits tumor growth. IL-1β deficiency or specific inhibition of VEGF-A in myeloid cells recapitulates the beneficial effect of Ly-6Chi monocyte depletion, suggesting their complementary roles in tumorigenesis in the context of mild hyperlipidemia. Conclusion: Our study shows that dyslipidemia provide high amounts of activated myeloid cells with pro-tumoral activity and shed light on cross-disease communication between cardiovascular pathologies and cancer. Translational Perspective: In this study we demonstrate that dyslipidemia accelerates the development of solid tumors through the increased infiltration of Ly6Chi monocytes that differentiate into pro-tumoral myeloid cells. These findings demonstrate that dyslipidemia can silently boost tumor development in normal-weight individuals through the action of IL-1β and VEGF-A. Our work sheds light on the potential benefit of targeting IL-1β and VEGF-A in cancer patients with moderate dyslipidemia.


Sign in / Sign up

Export Citation Format

Share Document