scholarly journals 736 Treatment with decitabine (DAC) induces the expression of stemness markers, PD-L1 and NY-ESO-1 in colorectal cancer

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A767-A767
Author(s):  
Nassiba Taib ◽  
Maysaloun Merhi ◽  
Varghese Inchakalody ◽  
Sarra Mestiri ◽  
Afsheen Raza ◽  
...  

BackgroundColorectal cancer (CRC) is a leading cause of cancer related deaths. Epigenetic silencing of numerous tumor suppressor genes by promoter region hypermethylation has been found in a variety of cancers including CRC. The chemotherapeutic drug decitabine (DAC) is a strong inducer of DNA demethylation. Primary cancer cells are known to express stemness markers as an escape pathway of treatment. Moreover, immunoregulatory genes can be inactivated in these cells by methylation of promoter CpG islands. Both mechanisms are known to play crucial roles in tumor progression. In this study, we investigated the effect of DAC on the expression of stemness markers, Programmed cell death ligand (PD-L1) and New York esophageal squamous cell carcinoma 1 (NY-ESO-1) in a metastatic (1872 Col) and a primary (1076 Col) colorectal cancer cell lines isolated from patients' tumor tissues.MethodsThe 1076 Col and 1872 Col cell lines were treated with 5 μM of DAC for 48 hours. Differential expression of a panel of stemness and immunoregulatory markers before and after treatment was analyzed by Flow cytometry (FACS), Western Blotting (WB) and quantitative real time PCR (qRT-PCR).ResultsThe following stemness markers: CD44, Nanog, KLF-4, CD133 and MSI1 were up-regulated in both 1076 Col and 1872 Col cell lines after treatment. However, significant up-regulation of the immunoinhibitory PD-L1 marker was recorded after treatment only in the metastatic 1872 Col. Interestingly, the NY-ESO-1 tumor antigen was significantly upregulated in both 1076 Col and 1872 Col cell lines after treatment.ConclusionsTreatment of colon cancer cells with DAC induces chemotherapeutic resistance as evidenced by the induction/upregulation of the stemness markers; and immune escape mechanism through the induction/upregulation of PD-L1. However, such treatment resulted in the induction/expression of the most immunogenic NY-ESO-1 tumor antigen. Our data suggest the importance use of a combined treatment strategy utilizing chemotherapy (DAC) with anti-PD-L-1/PD-1treatment in colon cancer patients.Ethics ApprovalThe study obtained ethical approval from Hamad Medical Corporation, Medical Research Center Ethic Board: Grant ID : IRGC-04-SI-17-142.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1261
Author(s):  
Nurul Fattin Che Rahim ◽  
Yazmin Hussin ◽  
Muhammad Nazirul Mubin Aziz ◽  
Nurul Elyani Mohamad ◽  
Swee Keong Yeap ◽  
...  

Colorectal cancer (CRC) is the third most common type of cancer worldwide and a leading cause of cancer death. According to the Malaysian National Cancer Registry Report 2012–2016, colorectal cancer was the second most common cancer in Malaysia after breast cancer. Recent treatments for colon cancer cases have caused side effects and recurrence in patients. One of the alternative ways to fight cancer is by using natural products. Curcumin is a compound of the rhizomes of Curcuma longa that possesses a broad range of pharmacological activities. Curcumin has been studied for decades but due to its low bioavailability, its usage as a therapeutic agent has been compromised. This has led to the development of a chemically synthesized curcuminoid analogue, (2E,6E)-2,6-bis(2,3-dimethoxybenzylidine) cyclohexanone (DMCH), to overcome the drawbacks. This study aims to examine the potential of DMCH for cytotoxicity, apoptosis induction, and activation of apoptosis-related proteins on the colon cancer cell lines HT29 and SW620. The cytotoxic activity of DMCH was evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) cell viability assay on both of the cell lines, HT29 and SW620. To determine the mode of cell death, an acridine orange/propidium iodide (AO/PI) assay was conducted, followed by Annexin V/FITC, cell cycle analysis, and JC-1 assay using a flow cytometer. A proteome profiler angiogenesis assay was conducted to determine the protein expression. The inhibitory concentration (IC50) of DMCH in SW620 and HT29 was 7.50 ± 1.19 and 9.80 ± 0.55 µg/mL, respectively. The treated cells displayed morphological features characteristic of apoptosis. The flow cytometry analysis confirmed that DMCH induced apoptosis as shown by an increase in the sub-G0/G1 population and an increase in the early apoptosis and late apoptosis populations compared with untreated cells. A higher number of apoptotic cells were observed on treated SW620 cells as compared to HT29 cells. Human apoptosis proteome profiler analysis revealed upregulation of Bax and Bad proteins and downregulation of Livin proteins in both the HT29 and SW620 cell lines. Collectively, DMCH induced cell death via apoptosis, and the effect was more pronounced on SW620 metastatic colon cancer cells, suggesting its potential effects as an antimetastatic agent targeting colon cancer cells.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Helena de Castro e Gloria ◽  
Laura Jesuíno Nogueira ◽  
Patrícia Bencke Grudzinski ◽  
Paola Victória da Costa Ghignatti ◽  
Temenouga Nikolova Guecheva ◽  
...  

Abstract Background The advances in colorectal cancer (CRC) treatment include the identification of deficiencies in Mismatch Repair (MMR) pathway to predict the benefit of adjuvant 5-fluorouracil (5-FU) and oxaliplatin for stage II CRC and immunotherapy. Defective MMR contributes to chemoresistance in CRC. A growing body of evidence supports the role of Poly-(ADP-ribose) polymerase (PARP) inhibitors, such as Olaparib, in the treatment of different subsets of cancer beyond the tumors with homologous recombination deficiencies. In this work we evaluated the effect of Olaparib on 5-FU cytotoxicity in MMR-deficient and proficient CRC cells and the mechanisms involved. Methods Human colon cancer cell lines, proficient (HT29) and deficient (HCT116) in MMR, were treated with 5-FU and Olaparib. Cytotoxicity was assessed by MTT and clonogenic assays, apoptosis induction and cell cycle progression by flow cytometry, DNA damage by comet assay. Adhesion and transwell migration assays were also performed. Results Our results showed enhancement of the 5-FU citotoxicity by Olaparib in MMR-deficient HCT116 colon cancer cells. Moreover, the combined treatment with Olaparib and 5-FU induced G2/M arrest, apoptosis and polyploidy in these cells. In MMR proficient HT29 cells, the Olaparib alone reduced clonogenic survival, induced DNA damage accumulation and decreased the adhesion and migration capacities. Conclusion Our results suggest benefits of Olaparib inclusion in CRC treatment, as combination with 5-FU for MMR deficient CRC and as monotherapy for MMR proficient CRC. Thus, combined therapy with Olaparib could be a strategy to overcome 5-FU chemotherapeutic resistance in MMR-deficient CRC.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4417
Author(s):  
Rabin Neupane ◽  
Saloni Malla ◽  
Mariam Sami Abou-Dahech ◽  
Swapnaa Balaji ◽  
Shikha Kumari ◽  
...  

A novel series of 4-anilinoquinazoline analogues, DW (1–10), were evaluated for anticancer efficacy in human breast cancer (BT-20) and human colorectal cancer (CRC) cell lines (HCT116, HT29, and SW620). The compound, DW-8, had the highest anticancer efficacy and selectivity in the colorectal cancer cell lines, HCT116, HT29, and SW620, with IC50 values of 8.50 ± 2.53 µM, 5.80 ± 0.92 µM, and 6.15 ± 0.37 µM, respectively, compared to the non-cancerous colon cell line, CRL1459, with an IC50 of 14.05 ± 0.37 µM. The selectivity index of DW-8 was >2-fold in colon cancer cells incubated with vehicle. We further determined the mechanisms of cell death induced by DW-8 in SW620 CRC cancer cells. DW-8 (10 and 30 µM) induced apoptosis by (1) producing cell cycle arrest at the G2 phase; (2) activating the intrinsic apoptotic pathway, as indicated by the activation of caspase-9 and the executioner caspases-3 and 7; (3) nuclear fragmentation and (4) increasing the levels of reactive oxygen species (ROS). Overall, our results suggest that DW-8 may represent a suitable lead for developing novel compounds to treat CRC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zeinab Faghfoori ◽  
Mohammad Hasan Faghfoori ◽  
Amir Saber ◽  
Azimeh Izadi ◽  
Ahmad Yari Khosroushahi

Abstract Background Colorectal cancer (CRC), with a growing incidence trend worldwide, is resistant to apoptosis and has uncontrolled proliferation. It is recently reported that probiotic microorganisms exert anticancer effects. The genus Bifidobacterium, one of the dominant bacterial populations in the gastrointestinal tract, has received increasing attention because of widespread interest in using it as health-promoting microorganisms. Therefore, the present study aimed to assess the apoptotic effects of some bifidobacteria species on colon cancer cell lines. Methods The cytotoxicity evaluations performed using MTT assay and FACS-flow cytometry tests. Also, the effects of five species of bifidobacteria secretion metabolites on the expression level of anti- or pro-apoptotic genes including BAD, Bcl-2, Caspase-3, Caspase-8, Caspase-9, and Fas-R studied by real-time polymerase chain reaction (RT-PCR) method. Results The cell-free supernatant of all studied bifidobacteria significantly decreased the survival rates of colon cancer cells compared with control groups. Flow cytometric and RT-PCR results indicated that apoptosis is induced by bifidobacteria secretion metabolites and the mechanism for the action of bifidobacteria species in CRC prevention could be down-regulation and up-regulation of anti-apoptotic and, pro-apoptotic genes. Conclusions In the present study, different bifidobacteria species showed anticancer activity on colorectal cancer cells through down-regulation and up-regulation of anti-apoptotic and pro-apoptotic genes. However, further studies are required to clarify the exact mechanism of apoptosis induction by bifidobacteria species.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Michael Fichtner ◽  
Emir Bozkurt ◽  
Manuela Salvucci ◽  
Christopher McCann ◽  
Katherine A. McAllister ◽  
...  

AbstractColorectal cancer is a molecularly heterogeneous disease. Responses to genotoxic chemotherapy in the adjuvant or palliative setting vary greatly between patients, and colorectal cancer cells often resist chemotherapy by evading apoptosis. Antagonists of an inhibitor of apoptosis proteins (IAPs) can restore defective apoptosis signaling by degrading cIAP1 and cIAP2 proteins and by inhibition of XIAP. Due to the multiple molecular mechanisms-of-action of these targets, responses to IAP antagonist may differ between molecularly distinct colon cancer cells. In this study, responses to the IAP antagonist Birinapant and oxaliplatin/5-fluorouracil (5-FU) were investigated in 14 colon cancer cell lines, representing the consensus molecular subtypes (CMS). Treatment with Birinapant alone did not result in a substantial increase in apoptotic cells in this cell line panel. Annexin-V/PI assays quantified by flow cytometry and high-content screening showed that Birinapant increased responses of CMS1 and partially CMS3 cell lines to oxaliplatin/5-FU, whereas CMS2 cells were not effectively sensitized. FRET-based imaging of caspase-8 and -3 activation validated these differences at the single-cell level, with CMS1 cells displaying sustained activation of caspase-8-like activity during Birinapant and oxaliplatin/5-FU co-treatment, ultimately activating the intrinsic mitochondrial apoptosis pathway. In CMS2 cell lines, Birinapant exhibited synergistic effects in combination with TNFα, suggesting that Birinapant can restore extrinsic apoptosis signaling in the context of inflammatory signals in this subtype. To explore this further, we co-cultured CMS2 and CMS1 colon cancer cells with peripheral blood mononuclear cells. We observed increased cell death during Birinapant single treatment in these co-cultures, which was abrogated by anti-TNFα-neutralizing antibodies. Collectively, our study demonstrates that IAP inhibition is a promising modulator of response to oxaliplatin/5-FU in colorectal cancers of the CMS1 subtype, and may show promise as in the CMS2 subtype, suggesting that molecular subtyping may aid as a patient stratification tool for IAP antagonists in this disease.


2021 ◽  
Author(s):  
Zeinab Faghfoori ◽  
Mohammad Hasan Faghfoori ◽  
Amir Saber ◽  
Azimeh Izadi ◽  
Ahmad Yari Khosroushahi

Abstract Background: Colorectal cancer (CRC), with a growing incidence trend worldwide, is resistant to apoptosis and have the uncontrolled proliferation. It is recently reported that probiotic microorganisms exert anticancer effects. The genus Bifidobacterium, one of the dominant bacterial populations in the gastrointestinal tract, has received increasing attention because of widespread interest in using as health-promoting microorganisms. Therefore, the present study aimed to assess the apoptotic effects of some bifidobacteria species on colon cancer cell lines.Methods: The cytotoxicity evaluations performed using MTT assay and FACS-flow cytometry tests. Also, the effects of five species of bifidobacteria secretion metabolites on the expression level of anti- or pro-apoptotic genes including BAD, Bcl-2, Caspase-3, Caspase-8, Caspase-9, and Fas-R studied by real-time polymerase chain reaction (RT-PCR) method. Results: The cell-free supernatant of all studied bifidobacteria significantly decreased the survival rates of colon cancer cells compared with control groups. Flow cytometric and RT-PCR results indicated that apoptosis is induced by bifidobacteria secretion metabolites and the mechanism for the action of bifidobacteria species in CRC prevention could be down-regulation and up-regulation of anti-apoptotic and, pro-apoptotic genes.Conclusions: In the present study, different bifidobacteria species showed anticancer activity on colorectal cancer cells through down-regulation and up-regulation of anti-apoptotic and pro-apoptotic genes. However, further studies are required to clarify the exact mechanism of apoptosis induction by bifidobacteria species.


2019 ◽  
Vol 9 (10) ◽  
pp. 1424-1428
Author(s):  
Zhouyang Cheng ◽  
Yang Cao ◽  
Qingfeng Ni ◽  
Jun Qin

Colorectal cancer is one of malignant tumors. microRNA plays an important role in various diseases. In this study, we evaluated miR-223's effect on the proliferation of colon cancer cells. Protein and RNA expression levels in patients with clinical colorectal cancer were determined by western blot and real-time quantitative PCR respectively. In addition, the mechanism of miR-223 action was explored by combining transfection methods in cell lines. Colon cancer tissues showed significantly elevated miR-223 expression compared with adjacent tissues. Meanwhile, FOXO3a and BIM protein levels were significantly lower in cancer tissues compared to adjacent tissues. In colon cancer cell lines, knockdown of miR-223 increased cell proliferation and decreased BIM expression. The luciferase reporter gene showed that miR-223 down-regulates BIM expression through targeting FOXO3a. In colon cancer cells, miR-223 can down-regulate BIM expression through FOXO3a, thereby promoting the proliferation of colon cancer cells, indicating that targeting miR-223-regulated FOXO3a pathway might lead to the development of a number of drugs, and it is feasible to have a purpose to regulate the behavior of malignant cells.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A50.1-A50
Author(s):  
M Mianowska ◽  
M Zaremba-Czogalla ◽  
A Zygmunt ◽  
J Gubernator

BackgroundColorectal cancer is the third most commonly diagnosed malignant tumor, taking fourth place in terms of cause of cancer deaths worldwide.1 Unfortunately, the ability of the immune system to distinguish its own from foreign cells is often limited. One of the overexpressed receptors is receptor CD47 - widely distributed glycoprotein on the cell surface of various kind of tumors. It plays a role as ‘don’t eat me’ signal by binding with receptor SIRPα, presents on the cell surface of macrophages.2 Calreticulin, protein occurring on the surface of tumor cells and phagocytes, acts as protein with pro-phagocytic properties. Several natural bioactive substances are predicted to induce immunogenic cell death by translocation calreticulin on the surface of cancer cells which significantly increases the efficiency of their phagocytosis. Moreover, one of the well-known TLR-7 receptor agonists - imiquimod, is involved in phosphorylation of Bruton’s tyrosine kinase leading to the appearance of calreticulin on the surface of macrophages, which increases the efficiency of phagocytosis of tumor cells.3 Combination therapy composed of berberine and imiquimod can be highlighted as effective immunotherapy for colon cancer. However, such an approach remains very limited. Liposomes can serve as promising carriers for targeting delivery and controlled release of anti-cancer agents.Material and MethodsLiposomes were prepared by the thin-film hydration method followed by extrusion. Human colon cancer cell line (LS180 I SW620) and human monocytic cell line (THP-1) were used for experiments. Calreticulin was detected by using confocal microscopy.ResultsThe work presented aimed to develop novel liposomal formulations of berberine and imiquimod which were examined for their efficacy in combination against colorectal cancer cell lines. Liposomal formulations of both compounds were successfully prepared using active loading method with different pH generating agents. All loading methods showed desired characteristics in terms of mean liposome size and polydispersity. The encapsulation efficiency was higher than 95% for almost all used formulations. The in vitro study proved cytotoxicity of berberine loaded liposomal formulations on tested colon cancer cell lines. The results of the immunofluorescence staining indicated that the both compounds triggered calreticulin on the cell surface (colon cancer or macrophages).ConclusionsThe combination of both substances in the liposomal form may generate a synergistic effect on phagocytosis of colon cancer cells.ReferencesArnold M, Sierra MS, Laversanne M, et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017;66:683–691.Sick E, Jeanne A, Schneider C, Dedieu S, Takeda K, Martiny L. CD47 update: a multifaceted actor in the tumor microenvironment of potential therapeutic interest, Br J Pharmacol 2012, 167(7):1415–30.M. Feng, et al., Macrophages eat cancer cells using their own calreticulin as a guide: Roles of TLR and Btk. PNAS 2015;112( 7):2145–2150.Disclosure InformationM. Mianowska: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Significant; National Science Center, Poland. M. Zaremba-Czogalla: None. A. Zygmunt: None. J. Gubernator: None.


Author(s):  
Yan Li ◽  
Hailong Lei ◽  
Ming Zhang ◽  
Guangming Wu ◽  
Caiyun Guo ◽  
...  

Background: To study the molecular mechanism of cisplatin chemotherapy resistance in colorectal cancer cells and to explore the effect of miRNA in regulating the expression of glucose transporter 3 (SLC2A3) and the proliferation and migration of colon cancer cells. Methods: All samples were obtained from the People’s Hospital of Wuhai, Wuhai, China between June 2019 and June 2020. Real-time quantitative PCR (qRT-PCR) was carried out to check the expression of miR-103a in these cell lines. Western blotting and Luciferase reporter gene detection confirmed the regulation of the miR-103a/SLC2A3 axis. Western blotting detected the activation of SLC2A3, caspased-9 and -3. Results: The expression of SLC2A3 protein in colon cancer cell lines was significantly higher than that of normal colon cancer cells, while the expression of SLC2A3 miRNA showed no significant difference (P<0.05). Then, through clone formation analysis, SLC2A3 was closely related to the proliferation of human colon cancer cells. Functional recovery experiments showed that increasing the expression of miR-103a could reverse the abnormal proliferation caused by overexpression of SLC2A3. Conclusion: Overall, miR-103a can inhibit the proliferation of human colon cancer cells by targeting SLC2A3, and this result will provide a potential target for the treatment of colon cancer.


2020 ◽  
Author(s):  
Zeinab Faghfoori ◽  
Mohammad Hasan Faghfoori ◽  
Amir Saber ◽  
Azimeh Izadi ◽  
Ahmad Yari Khosroushahi

Abstract Background: Colorectal cancer (CRC), with a growing incidence trend worldwide, is resistant to apoptosis and have the uncontrolled proliferation. It is recently reported that probiotic microorganisms exert anticancer effects. The genus Bifidobacterium, one of the dominant bacterial populations in the gastrointestinal tract, has received increasing attention because of widespread interest in using as health-promoting microorganisms. Therefore, the present study aimed to assess the apoptotic effects of some bifidobacteria species on colon cancer cell lines.Methods: The cytotoxicity evaluations performed using MTT assay and FACS-flow cytometry tests. Also, the effects of five species of bifidobacteria secretion metabolites on the expression level of anti- or pro-apoptotic genes including BAD, Bcl-2, Caspase-3, Caspase-8, Caspase-9, and Fas-R studied by real-time polymerase chain reaction (RT-PCR) method. Results: The cell-free supernatant of all studied bifidobacteria significantly decreased the survival rates of colon cancer cells compared with control groups. Flow cytometric and RT-PCR results indicated that apoptosis is induced by bifidobacteria secretion metabolites and the mechanism for the action of bifidobacteria species in CRC prevention could be down-regulation and up-regulation of anti-apoptotic and, pro-apoptotic genes.Conclusions: In the present study, different bifidobacteria species showed anticancer activity on colorectal cancer cells through down-regulation and up-regulation of anti-apoptotic and pro-apoptotic genes. However, further studies are required to clarify the exact mechanism of apoptosis induction by bifidobacteria species.


Sign in / Sign up

Export Citation Format

Share Document