scholarly journals 740 Radiotherapy-activated NBTXR3 nanoparticles Increase CD8+ T cell infiltration and diversity in tumors, and modulate the immunopeptidome of cancer cells

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A771-A771
Author(s):  
Audrey Darmon ◽  
Ping Zhang ◽  
Jordan Da silva ◽  
Sebastien Paris

BackgroundWhen exposed to radiotherapy (RT), NBTXR3 nanoparticles increase radiation dose deposition from within the cancer cells. NBTXR3 is intended for a single intratumor injection. Results from a phase II/III clinical trial in patients with locally advanced Soft Tissue Sarcoma demonstrated significant superiority and clinical benefits of NBTXR3 activated by RT compared to RT alone, and was well tolerated. NBTXR3 is currently being evaluated in several other tumors including head and neck, liver, and pancreatic cancer as a single agent or in combination with anti-PD1. Moreover, preclinical studies have demonstrated that NBTXR3 can produce a significant abscopal effect, whereas RT alone cannot. Here, we explored the impact of NBTXR3 activated by RT on CD8+ infiltrates and TcR repertoire diversity change, and the effect on the immunopeptidome of cancer cells.MethodsCT26 (murine colorectal cancer cells) were subcutaneously injected in BALB/c mice in one flank. Then, tumors were intratumorally injected with NBTXR3 (or vehicle) and irradiated 24 hours later with 4Gy per fraction for 3 consecutive days. Tumors were collected 3 days after the last RT fraction and immune cell infiltrates were measured using immunohistochemistry (IHC) and digital pathology. For TcR repertoire sequencing, the same workflow was followed, except cells were injected in both flanks. Only right tumors received treatment, while left tumors remained untreated. For immunopeptidome analysis, in vitro cells were irradiated by 4Gy. After one day, cells were collected for isolation and sequencing of MHC I-loaded peptides.ResultsIHC analyses showed a significant increase of CD8+ T cell infiltrates in tumors of mice treated with NBTXR3+RT, while RT alone had no significant effect. In addition, NBTXR3+RT treatment was able to increase TcR repertoire diversity, both in treated and untreated tumors, compared to RT alone. Finally, analysis of immunopeptidome showed that NBTXR3+RT changed the profile of MHC-I-loaded peptides.ConclusionsOur in vivo data indicate that NBTXR3+RT can modulate the microenvironment of treated tumors, leading to enhanced CD8+ T cell infiltration as well as modification of the TcR repertoire, both in treated and distant untreated tumors. These NBTXR3+RT-induced responses may be related to changes in the immunopeptidome of cancer cells triggered by this treatment.

2021 ◽  
Vol 83 (1) ◽  
Author(s):  
Christian John Hurry ◽  
Alexander Mozeika ◽  
Alessia Annibale

AbstractDescribing the anti-tumour immune response as a series of cellular kinetic reactions from known immunological mechanisms, we create a mathematical model that shows the CD4$$^{+}$$ + /CD8$$^{+}$$ + T-cell ratio, T-cell infiltration and the expression of MHC-I to be interacting factors in tumour elimination. Methods from dynamical systems theory and non-equilibrium statistical mechanics are used to model the T-cell dependent anti-tumour immune response. Our model predicts a critical level of MHC-I expression which determines whether or not the tumour escapes the immune response. This critical level of MHC-I depends on the helper/cytotoxic T-cell ratio. However, our model also suggests that the immune system is robust against small changes in this ratio. We also find that T-cell infiltration and the specificity of the intra-tumour TCR repertoire will affect the critical MHC-I expression. Our work suggests that the functional form of the time evolution of MHC-I expression may explain the qualitative behaviour of tumour growth seen in patients.


2020 ◽  
Vol 38 (4_suppl) ◽  
pp. 189-189
Author(s):  
Katherine Anne Johnson ◽  
Philip Emmerich ◽  
Kristina A. Matkowskyj ◽  
Dustin A. Deming

189 Background: The clinical indications for immunotherapies continue to increase across cancer types. In colorectal cancer (CRC), there has been little progress in the use of these therapies outside of mismatch repair deficient cancers (dMMR). However, even in dMMR cancers only a minority actually respond to the FDA-approved anti-PD1 agents. The tumor microenvironment is increasingly implicated in the resistance of cancers to immune-based therapies. Our group has previously described that accumulation of a matrix proteoglycan, versican, correlates with a reduction in CD8+ T-cell infiltration in CRCs, while proteolysis of versican, releasing the bioactive fragment versikine, correlates with increased infiltration. Here we examine the impact of pathogenic mutations on the utility of MMR status and versican proteolysis to predict CD8+ T-cell infiltration. Methods: Matched normal colon and CRC tissues from 122 patients were stained for versican, versikine, MLH1, MSH2, MSH6, PMS2, CNNB1, and CD8. Each was reviewed by a blinded GI surgical pathologist and CD8 quantified as tumor infiltrating lymphocytes (TILs) per high power field (hpf). 107 of the CRC samples were available for sequencing using the Qiagen Comprehensive Cancer Panel examining 160 genes across cancer relevant hotspots. The molecular profile was correlated with the IHC staining. Results: As previously reported, dMMR tumors had higher CD8+ T-cell infiltration. This trend persisted across dMMR genotypes (dMMR vs proficient (p)MMR p = 0.0016). Versican proteolysis correlated with increased CD8+ T cell infiltration in dMMR and pMMR cancers and was present in cancers with/without APC, TP53, and KRAS mutations. Across common mutations, cancers with the versican proteolysis predominant phenotype had more CD8+ T-cell infiltration than those without (APC mutant (mt): 11.82 vs 1.97 CD8+ TILs/hpf, p < 0.001; KRAS mt: 9.39 vs 3.08, p = 0.15; BRAF mt: 25.00 vs 7.50, p = 0.13; TP53 mt: 8.61 vs 1.63, p < 0.001). Conclusions: Across common mutations, versican proteolysis predicts CD8+ T-cell infiltration in both dMMR and pMMR CRC. Further investigation into whether this increase in infiltration will lead to greater immunotherapy response is warranted.


2020 ◽  
Author(s):  
Christian John Hurry ◽  
Alexander Mozeika ◽  
Alessia Annibale

AbstractDescribing the anti-tumour immune response as a series of cellular kinetic reactions from known immunological mechanisms, we create a mathematical model that shows the CD4+/CD8+ T-cell ratio, T-cell infiltration and the expression of MHC-I to be interacting factors in tumour elimination. Methods from dynamical systems theory and non-equilibrium statistical mechanics are used to model the T-cell dependent anti-tumour immune response. Our model predicts a critical level of MHC-I expression which determines whether or not the tumour escapes the immune response. This critical level of MHC-I depends on the helper/cytotoxic T-cell ratio. However, our model also suggests that the immune system is robust against small changes in this ratio. We also find that T-cell infiltration and the specificity of the intra-tumour TCR repertoire will affect the critical MHC-I expression. Our work suggests that the functional form of the time evolution of MHC-I expression may explain the qualitative behaviour of tumour growth seen in patients.Mathematics Subject Classification (2010)MSC 37C25 · MSC 82C99 · MSC 37N25 · MSC 92B99


2020 ◽  
Vol 18 (10) ◽  
pp. 1589-1602 ◽  
Author(s):  
Jing Han ◽  
Zhen Jiang ◽  
Chennan Wang ◽  
Xin Chen ◽  
Rongqing Li ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A557-A557
Author(s):  
Tamara Tanos ◽  
Christian Heichinger ◽  
Sabine Wilson ◽  
Marta Canamero ◽  
Mariana Bustamante ◽  
...  

BackgroundWe previously described the capacity of RO7122290 (RO) - a FAP-targeted 4-1BB bispecific antibody - to induce CD8+ T cell infiltration and activation in the tumor (Moreno V. et al, SITC 2020). Aiming to compare pharmacodynamic (PD) changes in tumor nests and stroma, paired tumor biopsies from patients treated with RO (Part A) and RO + atezolizumab (Part B) were analysed by digital spatial profiling (DSP, Nanostring).MethodsSeven paired (baseline and on-treatment) FFPE tumor tissue biopsies (three from Part A, four from Part B) obtained from an ongoing Phase 1/1b trial (EUDRACT 2017-003961-83) were assessed for mRNA and protein expression. Biopsies were taken from six different tumor types at different RO doses. Up to twelve Regions of Interest (ROIs) were collected per slide and the morphology markers PanCK, CD8, CD3 and DAPI were applied. The ROIs were further annotated in tumor nests and stroma segments based on PanCK staining. The immune-oncology 58-plex protein and 78-plex mRNA expression panels (Nanostring) were used to profile all samples. Data were normalized according to Nanostring guidelines and filtered based on relevance (absolute log2 fold change > 1) and significance (FDR < 0.05, p-value).ResultsThe level of CD8+ T cell infiltration measured by spatial profiling correlated with the level measured by IHC, in both tumor nests and stroma. The activation markers 4-1BB and PD-1 were upregulated, confirming the PD effect already measured by mRNA sequencing. We also identified novel protein markers - CD40, PD-L1 and IDO1 - being upregulated after treatment. Spatial regulation differed among the markers with 4-1BB, PD-1 and CD40 upregulated only in the stroma, PD-L1 and IDO1 upregulated in the tumor nests and in the stroma. IDO1 induction is particularly relevant, since this protein is known to attenuate 4-1BB-mediated effector responses. Conventional IHC analysis performed on 14 paired biopsies confirmed IDO1 being upregulated in 11 out of 14 cases and revealed dendritic cells, macrophages and stromal cells to express IDO1. Importantly, IDO1 upregulation was observed in both Part A (3 out of 3) and Part B (8 out of 11).ConclusionsSpatial profiling allowed us to identify key markers that are spatially regulated after treatment and to gain new insights on the MoA of RO. The induction of IDO1 by RO confirms the dual immunoregulatory nature of 4-1BB signaling and highlights IDO1 as a potential resistance mechanism for RO in the clinical setting, both as single agent and in combination with atezolizumab.Trial RegistrationEUDRACT Number: 2017-003961-83; Protocol Number: BP40087ReferencesMoreno V. et al, Pharmacodynamic assessment of a novel FAP-targeted 4–1BB agonist, administered as single agent and in combination with atezolizumab to patients with advanced solid tumors, Nov 1 2020, Journal for ImmunoTherapy of Cancer, presented at SITC 2020


2020 ◽  
Vol 131 (4) ◽  
Author(s):  
Toshihiko Kawaguchi ◽  
Takeharu Ono ◽  
Fumihiko Sato ◽  
Akihiko Kawahara ◽  
Tatsuyuki Kakuma ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A368-A369
Author(s):  
David Krige ◽  
Marwan Fakih ◽  
Lee Rosen ◽  
Ding Wang ◽  
Wael Harb ◽  
...  

BackgroundMicrosatellite-stable (MSS) and instability-low (MSI-L) metastatic colorectal cancer (mCRC) are typically characterised as ”immune-excluded/desert” tumour microenvironments lacking T-cell infiltration. Anti-PD-1 monotherapy has little clinical benefit in MSS/MSI-L mCRC1 and knowledge of the effects of PD-1 inhibition on T-cell activation/infiltration in this population is limited. Novel combination therapies to overcome anti-PD-1 resistance are required. SPICE is a multicentre, open-label, phase 1 study of the tumour-selective chimeric Ad11/Ad3 group B oncolytic adenovirus enadenotucirev plus nivolumab in patients with metastatic/advanced epithelial tumours refractory to standard therapy. Preliminary data from patients with MSS/MSI-L mCRC demonstrated a median overall survival of 14 months, manageable tolerability and intratumoural T-cell infiltration.2 Here we characterise the immunological effects of tumour re-engineering with enadenotucirev in combination with nivolumab in patients with MSS/MSI-L mCRC.MethodsPatients received increasing doses and/or cycles of intravenous enadenotucirev followed by up to 8 cycles of nivolumab as previously described.2 Wherever possible, pre- and post-treatment (~5 weeks post-first enadenotucirev) biopsies were collected; samples were analysed using immunohistochemistry and automated image analysis. Peripheral blood mononuclear cell immunophenotyping (multiparameter flow cytometry) and serum cytokines were assessed at multiple times.Results43 patients with mCRC were treated (86% MSS/MSI-L; 14% unknown). Among the 13 patients (12/13 MSS/MSI-L; 1/13 unknown) with matched biopsies, 11 had increased intratumoural and stromal CD8+ T-cell infiltration in post-treatment biopsies (median [Q1-Q3] fold changes 6.5× [1.5–25.4] and 1.9× [1.5–3.9], respectively; figure 1). CD4+ T-cell density increased in 10/13 patients and 8/13 patients had increased proportions of PD-L1+ immune cells. Increases in CD8 T-cell proliferation (Ki67; 7/9 patients) and cytolytic activity (Granzyme B; 7/13 patients) markers were seen. 4/13 patients converted from a ”desert” to an ”inflamed” immune phenotype (pathologist scored CD8/pan-cytokeratin staining). Immunophenotyping showed trends towards increased T-cell activation (CD38+ and HLA-DR+ CD8+ T cell populations) post-treatment (9/10 patients), including in one patient who had only received enadenotucirev prior to sampling. Persistent increases in inflammatory cytokines (IFNγ, IL-12p70, IL-17a) were seen in two patients from ~Day 15, including one who achieved a sustained objective response.Abstract 342 Figure 1Tumour immune cell infiltration following treatment with enadenotucirev plus nivolumabConclusionsThese data show that intravenous enadenotucirev plus nivolumab can induce immune infiltration/activation within MSS/MSI-L mCRC. These encouraging findings suggest that immune activation can be achieved even in ”immune-excluded/desert” tumours. SPICE has been closed following completion of dose-escalation. Efforts are now focused on the development of next-generation variants of enadenotucirev designed to further re-programme the tumour microenvironment by expressing immune-enhancer transgenes (T-SIGn vectors); these studies are ongoing (NCT04830592, NCT04053283, NCT03852511).AcknowledgementsThis study was funded by PsiOxus Therapeutics Limited and Bristol Myers Squibb. Medical writing support: Lola Parfitt, MRes, of PsiOxus Therapeutics Limited.Trial RegistrationEudraCT number2017-001231-39NCT number: NCT02636036ReferencesKawazoe A, Kuboki Y, Shinozaki E, et al. Multicenter phase I/II trial of napabucasin and pembrolizumab in patients with metastatic colorectal cancer (EPOC1503/SCOOP trial). Clin Cancer Res 2020;26:5887–5894.Fakih M, Wang D, Harb W, et al. SPICE: a phase I multicenter study of enadenotucirev in combination with nivolumab in tumors of epithelial origin: an analysis of the metastatic colorectal cancer patients in the dose escalation phase. Ann Oncol 2019:30(suppl_5):v252.Ethics ApprovalThe study was approved by the WCG Institutional Review Board (study approval number 20152656), UCLA Institutional Review Board (study approval number IRB#15-002010), Vanderbilt Institutional Review Board (study approval number IRB #171453) and Henry Ford Institutional Review Board (study approval number IRB #10349).


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5856
Author(s):  
Myung-Chul Kim ◽  
Zeng Jin ◽  
Ryan Kolb ◽  
Nicholas Borcherding ◽  
Jonathan Alexander Chatzkel ◽  
...  

Several clinicopathological features of clear cell renal cell carcinomas (ccRCC) contribute to make an “atypical” cancer, including resistance to chemotherapy, sensitivity to anti-angiogenesis therapy and ICIs despite a low mutational burden, and CD8+ T cell infiltration being the predictor for poor prognosis–normally CD8+ T cell infiltration is a good prognostic factor in cancer patients. These “atypical” features have brought researchers to investigate the molecular and immunological mechanisms that lead to the increased T cell infiltrates despite relatively low molecular burdens, as well as to decipher the immune landscape that leads to better response to ICIs. In the present study, we summarize the past and ongoing pivotal clinical trials of immunotherapies for ccRCC, emphasizing the potential molecular and cellular mechanisms that lead to the success or failure of ICI therapy. Single-cell analysis of ccRCC has provided a more thorough and detailed understanding of the tumor immune microenvironment and has facilitated the discovery of molecular biomarkers from the tumor-infiltrating immune cells. We herein will focus on the discussion of some major immune cells, including T cells and tumor-associated macrophages (TAM) in ccRCC. We will further provide some perspectives of using molecular and cellular biomarkers derived from these immune cell types to potentially improve the response rate to ICIs in ccRCC patients.


Sign in / Sign up

Export Citation Format

Share Document