scholarly journals Dual neutralisation of IL-17F and IL-17A with bimekizumab blocks inflammation-driven osteogenic differentiation of human periosteal cells

RMD Open ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. e001306
Author(s):  
Mittal Shah ◽  
Asher Maroof ◽  
Panos Gikas ◽  
Gayatri Mittal ◽  
Richard Keen ◽  
...  

ObjectivesInterleukin (IL)-17 signalling has been shown to be a key regulator of disease in ankylosing spondylitis (AS) with several IL-17 blockers currently clinically approved. Despite this, the role of IL-17 in bone pathology is poorly understood. This study aimed to investigate IL-17 signalling in the context of pathological bone formation.MethodsA biomimetic human periosteum-derived cell (hPDC) model of osteogenic differentiation was used in combination with recombinant IL-17 cytokines, T-cell supernatants or serum from patients with AS. IL-17A, IL-17F and bimekizumab monoclonal antibodies were used to block IL-17 cytokine action.ResultsRecombinant IL-17A and IL-17F are pro-osteogenic with respect to hPDC differentiation. T helper 17 or γδ-T cell supernatants also potently stimulated in vitro bone formation, which was blocked deeper by dual inhibition of IL-17A and IL-17F than by neutralisation of IL-17A or IL-17F individually. Osteogenic blockade may be due to an increase in expression of the Wnt antagonist DKK1. Interestingly, osteocommitment was also induced by serum obtained from patients with AS, which was also abrogated by dual neutralisation of IL-17A and IL-17F.ConclusionsThese data show for the first time that IL-17A and IL-17F enhance in vitro osteogenic differentiation and bone formation from hPDCs, inhibition of which may offer an attractive therapeutic strategy to prevent pathological bone formation.

2019 ◽  
Vol 131 ◽  
pp. 135-143
Author(s):  
Mohammad Mehdi Adibzadeh Sereshgi ◽  
Meghdad Abdollahpour-Alitappeh ◽  
Mehdi Mahdavi ◽  
Reza Ranjbar ◽  
Kazem Ahmadi ◽  
...  

Author(s):  
Ichiro Katayama ◽  
Lingli Yang ◽  
Aya Takahashi ◽  
Fei Yang ◽  
Mari Wataya-Kaneda

Aim: Previously, we reported increased number of T helper 17 (Th17) cells in vitiligo. However, in our recent study, tryptase and interleukin (IL)17 double positive cells which identified by polyclonal anti-IL17 antibody with specificity for IL17A, B, D, F was observed, but these mast cells cannot be stained by monoclonal anti-IL17 antibody with specificity for IL17A. Therefore, this study was aimed to clarify the role of mast cells in induction and progression of vitiligo. Methods: Mast cells were stained with two antibodies against IL17 and one antibody against tryptase by immunofluorescent staining. Furthermore, immunoelectron microscopy (IEM) analyses were conducted using anti-tryptase. In vitro, cultured epidermal keratinocytes were treated with agents which released by mast cells. Expression levels of mRNA were analyzed by real-time polymerase chain reaction (PCR), expression of protein levels was analyzed by western blotting. Results: An increased number of tryptase positive mast cells was observed at the lesional skin of upper dermis in vitiligo and rhododendrol-induced leukoderma (RDIL). These mast cells showed prominent degranulation in vitiligo. Interestingly, the melanosome forming glycoprotein non-metastatic melanoma protein B (GPNMB) is downregulated in the lesional basal keratinocytes in vitiligo and mast cell tryptase contributes to this phenomenon. In addition, small interfering GPNMB RNA (siGPNMB RNA)-introduced keratinocytes increased melanocyte survival through stem cell factor (SCF) production in the melanocyte/keratinocyte co-culture system. Conclusions: Mast cells might be two-faced in vitiligo induction, progression, and recovery through the differential function of histamine and tryptase.


2018 ◽  
Vol 34 (9) ◽  
pp. 1481-1498 ◽  
Author(s):  
Jae Wook Lee ◽  
Eunjin Bae ◽  
Sun-Ho Kwon ◽  
Mi-Yeon Yu ◽  
Ran-Hui Cha ◽  
...  

Abstract Background Signal transducer and activator of transcription 3 (STAT3) is a latent transcription factor critical for T-cell function. Although inhibition of the Janus kinase 2 (JAK2)/STAT3 pathway has been reported to be protective against ischemia-reperfusion injury (IRI), the role of T cell–associated STAT3 in the pathogenesis of renal IRI has not been specifically defined. Methods We induced renal IRI in both mice with T cell–specific STAT3 knockout (Lck-Cre;STAT3flox/flox) and wild-type controls (C57BL/6) and assessed renal damage and inflammation at 48 h after IRI. Human proximal tubular epithelial cells grown under hypoxia were treated with a JAK2 inhibitor, caffeic acid 3,4-dihydroxy-phenylethyl ester, to determine the effect of JAK2/STAT3 inhibition on renal epithelia. Independently, we disrupted Cln 3-requiring 9 (Ctr9) to inhibit T helper 17 (Th17) activation via RNA interference and determined if Ctr9 inhibition aggravates renal injury through upregulated Th17 activation. Results The Lck-Cre;STAT3flox/flox mice exhibited significantly reduced kidney damage compared with controls. This protective effect was associated with reduced intrarenal Th17 infiltration and proinflammatory cytokines. Human proximal tubular epithelial cells under hypoxia exhibited significant upregulation of interleukin 17 receptors, and pharmacologic inhibition of JAK2 significantly ameliorated this change. RNA interference with Ctr9 in splenocytes enhanced differentiation into Th17 cells. In vivo knockdown of Ctr9 in mice with renal IRI further aggravated Th17-associated inflammation and kidney injury. Conclusions STAT3 in T cells contributes to renal IRI through Th17 activation. Inhibition of Ctr9 further enhances Th17 activation and aggravates kidney injury, further supporting the role of Th17 cells in renal IRI.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2561-2561
Author(s):  
Joseph H. Chewning ◽  
Weiwei Zhang ◽  
Trenton Schoeb ◽  
Casey Weaver

Abstract The Th1 and Th2 lineages of CD4+ T helper cells are essential for control of host infection. Both lineages respond to antigenic stimulation with distinct effector functions and cytokine profiles. Differential homing patterns permit localization within specific tissue sites where these cells interact with other immune cells to promote the immune response. Variability in T helper lineage homing is due, in part, to differing chemokine receptor expression patterns. This laboratory and others recently described another CD4+ T helper lineage, Th17. Following stimulation, Th17 cells also produce a unique cytokine profile, including interleukin (IL)-17, IL-21, and IL-22. The Th17 lineage has now been implicated in the pathogenesis of several human autoimmune diseases, including psoriasis and inflammatory bowel disease, and appears to be critical for the inflammation of both the skin and gastrointestinal tract, respectively, seen in these diseases. It is not well understood whether Th17 cells arise within the inflammatory milieu in these tissues, or whether these cells possess a distinct homing pattern. We have performed studies using in vitro polarized Th17 cells for the study of tissue homing patterns in vivo. Experiments were performed using the well-described HLA Class II-disparate C57BL/6 (B6) to B6.C-H-2bm12 (bm12) model. Previous studies have established CD4+ T cell-dependent inflammation in this model. Naïve CD4+ T cells from B6 mice were polarized to the Th17 lineage in vitro using standard techniques, including IL-6 and TGF-β. FACS analysis of the Th17 cells prior to adoptive transfer revealed IL-17-positive staining in >60% cells and IFN-γ-positivity in <10%. Th17 or Th2-polarized control cells (1 × 106) were transferred into lethally irradiated bm12 mice (or syngeneic B6 control mice). Mice receiving Th17 cells demonstrated weight gain in the initial weeks compared to Th2 control recipients, but less than B6 syngeneic recipients. The Th17 recipients appeared less active, however, and most mice in this group eventually became moribund, requiring euthanasia. Complete necropsy was performed on mice from each group at intervals following transfer. Tissue analysis in the Th17 recipients revealed marked inflammation within the lungs, skin, liver, and gastrointestinal tract. Syngeneic B6 recipients of Th17 cells also demonstrated a similar tissue pattern, but with markedly reduced inflammation. Tissues from the bm12 Th2-polarized cell control mice, as well as T cell depleted marrow alone recipients did not demonstrate significant inflammation. Additional time course experiments revealed the initial target organs affected as the lungs and stomach, with subsequent involvement of other affected organs. FACS analysis of recipient hematopoietic tissues, using CD45.1 isotype distinction, revealed Th17 cell proliferation within the bm12 allogeneic recipients compared to the B6 syngeneic recipient mice (25–35% total cells of donor origin compared to 2–8%, respectively). CD4+ T cell counts performed on recipient spleens confirmed increased proliferation of Th17 cells within the allogeneic recipient compared to Th2 allogeneic and Th17 syngeneic controls (108 total donor-derived cells compared to 106 and 107, respectively). Cytokine analysis was performed by FACS on CD4+ T cells harvested from tissues. In contrast to pre-transfer analysis, the transferred CD4+ T cells harvested from allogeneic bm12 recipients secreted increased amounts of IFN-γ (12–33%) concomitant with a decrease in IL-17 production. Our studies demonstrate that Th17 CD4+ T cells are able to home to mucosal sites of early antigen encounter, in both the allogeneic and syngeneic setting. This pattern is consistent with the known role of IL-17 in innate immune response to infection. In the setting of chronic T cell stimulation, we also observed that Th17 cells can transition to a Th1-like, IFN-γ-producing CD4+ T cell. The skin, lungs, and GI tract are important sites of initial antigen encounter, and understanding the CD4+ Th17 T cell homing and proliferation patterns could have important implications in understanding both innate and adaptive immune responses to acute infection. Ongoing studies are underway to identify the role of specific chemokine receptors responsible for Th17 homing.


Author(s):  
Nahla Maher ◽  
HebatAllah Ismail Gawdat ◽  
Heba Helmy El Hadidi ◽  
Olfat Gamil Shaker

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Miao-Miao Zhao ◽  
Wei-Li Yang ◽  
Fang-Yuan Yang ◽  
Li Zhang ◽  
Wei-Jin Huang ◽  
...  

AbstractTo discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Zhang ◽  
Guoyu Yin ◽  
Heping Zhao ◽  
Hanzhi Ling ◽  
Zhen Xie ◽  
...  

AbstractIn inflamed joints, enhanced hyaluronic acid (HA) degradation is closely related to the pathogenesis of rheumatoid arthritis (RA). KIAA1199 has been identified as a hyaladherin that mediates the intracellular degradation of HA, but its extracellular function remains unclear. In this study, we found that the serum and synovial levels of secreted KIAA1199 (sKIAA1199) and low-molecular-weight HA (LMW-HA, MW < 100 kDa) in RA patients were significantly increased, and the positive correlation between them was shown for the first time. Of note, treatment with anti-KIAA1199 mAb effectively alleviated the severity of arthritis and reduced serum LMW-HA levels and cytokine secretion in collagen-induced arthritis (CIA) mice. In vitro, sKIAA1199 was shown to mediate exogenous HA degradation by attaching to the cell membrane of RA fibroblast-like synoviosytes (RA FLS). Furthermore, the HA-degrading activity of sKIAA1199 depended largely on its adhesion to the membrane, which was achieved by its G8 domain binding to ANXA1. In vivo, kiaa1199-KO mice exhibited greater resistance to collagen-induced arthritis. Interestingly, this resistance could be partially reversed by intra-articular injection of vectors encoding full-length KIAA1199 instead of G8-deleted KIAA119 mutant, which further confirmed the indispensable role of G8 domain in KIAA1199 involvement in RA pathological processes. Mechanically, the activation of NF-κB by interleukin-6 (IL-6) through PI3K/Akt signaling is suggested to be the main pathway to induce KIAA1199 expression in RA FLS. In conclusion, our study supported the contribution of sKIAA1199 to RA pathogenesis, providing a new therapeutic target for RA by blocking sKIAA1199-mediated HA degradation.


2021 ◽  
Vol 22 (7) ◽  
pp. 3687
Author(s):  
Joanna Homa ◽  
Alina Klosowska ◽  
Magdalena Chadzinska

Arginase is the manganese metalloenzyme catalyzing the conversion of l-arginine to l-ornithine and urea. In vertebrates, arginase is involved in the immune response, tissue regeneration, and wound healing and is an important marker of alternative anti-inflammatory polarization of macrophages. In invertebrates, data concerning the role of arginase in these processes are very limited. Therefore, in the present study, we focused on the changes in arginase activity in the coelomocytes of Eisenia andrei. We studied the effects of lipopolysaccharide (LPS), hydrogen peroxide (H2O2), heavy metals ions (e.g., Mn2+), parasite infection, wound healing, and short-term fasting (5 days) on arginase activity. For the first time in earthworms, we described arginase activity in the coelomocytes and found that it can be up-regulated upon in vitro stimulation with LPS and H2O2 and in the presence of Mn2+ ions. Moreover, arginase activity was also up-regulated in animals in vivo infected with nematodes or experiencing segment amputation, but not in fasting earthworms. Furthermore, we confirmed that the activity of coelomocyte arginase can be suppressed by l-norvaline. Our studies strongly suggest that similarly to the vertebrates, also in the earthworms, coelomocyte arginase is an important element of the immune response and wound healing processes.


2021 ◽  
Vol 22 (3) ◽  
pp. 1163
Author(s):  
Gaia Palmini ◽  
Cecilia Romagnoli ◽  
Simone Donati ◽  
Roberto Zonefrati ◽  
Gianna Galli ◽  
...  

Telangiectatic osteosarcoma (TOS) is an aggressive variant of osteosarcoma (OS) with distinctive radiographic, gross, microscopic features, and prognostic implications. Despite several studies on OS, we are still far from understanding the molecular mechanisms of TOS. In recent years, many studies have demonstrated not only that microRNAs (miRNAs) are involved in OS tumorigenesis, development, and metastasis, but also that the presence in high-grade types of OS of cancer stem cells (CSCs) plays an important role in tumor progression. Despite these findings, nothing has been described previously about the expression of miRNAs and the presence of CSCs in human TOS. Therefore, we have isolated/characterized a putative CSC cell line from human TOS (TOS-CSCs) and evaluated the expression levels of several miRNAs in TOS-CSCs using real-time quantitative assays. We show, for the first time, the existence of CSCs in human TOS, highlighting the in vitro establishment of this unique stabilized cell line and an identification of a preliminary expression of the miRNA profile, characteristic of TOS-CSCs. These findings represent an important step in the study of the biology of one of the most aggressive variants of OS and the role of miRNAs in TOS-CSC behavior.


Sign in / Sign up

Export Citation Format

Share Document