scholarly journals P191 Demonstrating performance of a low-cost ultra-rapid PCR assay forTrichomonas vaginaliswith point-of-care applications

2012 ◽  
Vol 88 (Suppl 1) ◽  
pp. A73.2-A73
Author(s):  
D M Pearce ◽  
D N Styles
Keyword(s):  
Low Cost ◽  
2011 ◽  
Vol 87 (Suppl 1) ◽  
pp. A307-A307
Author(s):  
D. Pearce ◽  
D. Shenton ◽  
S. Brake ◽  
A. Larry ◽  
M. Green ◽  
...  
Keyword(s):  
Low Cost ◽  

Author(s):  
Geoffrey Mulberry ◽  
Sudha Chaturvedi ◽  
Vishnu Chaturvedi ◽  
Brian N. Kim

AbstractCandida auris is a multidrug-resistant yeast that presents global health threat for the hospitalized patients. Early diagnostic of C. auris is crucial in control, prevention, and treatment. Candida auris is difficult to identify with standard laboratory methods and often can be misidentified leading to inappropriate management. A newly-devised real-time PCR assay played an important role in the ongoing investigation of the C. auris outbreak in New York metropolitan area. The assay can rapidly detect C. auris DNA in surveillance and clinical samples with high sensitivity and specificity, and also useful for confirmation of C. auris cultures. Despite its positive impact, the real-time PCR assay is difficult to deploy at frontline laboratories due to high-complexity set-up and operation. Using a low-cost handheld real-time PCR device, we show that the C. auris can potentially be identified in a low-complexity assay without the need for high-cost equipment. An implementation of low-cost real-time PCR device in hospitals and healthcare facilities is likely to accelerate the diagnosis of C. auris and for control of the global epidemic.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiong Ding ◽  
Kun Yin ◽  
Ziyue Li ◽  
Rajesh V. Lalla ◽  
Enrique Ballesteros ◽  
...  

Abstract The recent outbreak of novel coronavirus (SARS-CoV-2) causing COVID-19 disease spreads rapidly in the world. Rapid and early detection of SARS-CoV-2 facilitates early intervention and prevents the disease spread. Here, we present an All-In-One Dual CRISPR-Cas12a (AIOD-CRISPR) assay for one-pot, ultrasensitive, and visual SARS-CoV-2 detection. By targeting SARS-CoV-2’s nucleoprotein gene, two CRISPR RNAs without protospacer adjacent motif (PAM) site limitation are introduced to develop the AIOD-CRISPR assay and detect the nucleic acids with a sensitivity of few copies. We validate the assay by using COVID-19 clinical swab samples and obtain consistent results with RT-PCR assay. Furthermore, a low-cost hand warmer (~$0.3) is used as an incubator of the AIOD-CRISPR assay to detect clinical samples within 20 min, enabling an instrument-free, visual SARS-CoV-2 detection at the point of care. Thus, our method has the significant potential to provide a rapid, sensitive, one-pot point-of-care assay for SARS-CoV-2.


2019 ◽  
Vol 11 (4) ◽  
pp. 314-315
Author(s):  
James S Leathers ◽  
Maria Belen Pisano ◽  
Viviana Re ◽  
Gertine van Oord ◽  
Amir Sultan ◽  
...  

Abstract Background Treatment of HCV with direct-acting antivirals has enabled the discussion of HCV eradication worldwide. Envisioning this aim requires implementation of mass screening in resource-limited areas, usually constrained by testing costs. Methods We validated a low-cost, rapid diagnosis test (RDT) for HCV in three different continents in 141 individuals. Results The HCV RDT showed 100% specificity and sensitivity across different samples regardless of genotype or viral load (in samples with such information, 90%). Conclusions The HCV test validated in this study can allow for HCV screening in areas of need when properly used.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3985
Author(s):  
Nan Wan ◽  
Yu Jiang ◽  
Jiamei Huang ◽  
Rania Oueslati ◽  
Shigetoshi Eda ◽  
...  

A sensitive and efficient method for microRNAs (miRNAs) detection is strongly desired by clinicians and, in recent years, the search for such a method has drawn much attention. There has been significant interest in using miRNA as biomarkers for multiple diseases and conditions in clinical diagnostics. Presently, most miRNA detection methods suffer from drawbacks, e.g., low sensitivity, long assay time, expensive equipment, trained personnel, or unsuitability for point-of-care. New methodologies are needed to overcome these limitations to allow rapid, sensitive, low-cost, easy-to-use, and portable methods for miRNA detection at the point of care. In this work, to overcome these shortcomings, we integrated capacitive sensing and alternating current electrokinetic effects to detect specific miRNA-16b molecules, as a model, with the limit of detection reaching 1.0 femto molar (fM) levels. The specificity of the sensor was verified by testing miRNA-25, which has the same length as miRNA-16b. The sensor we developed demonstrated significant improvements in sensitivity, response time and cost over other miRNA detection methods, and has application potential at point-of-care.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Evan Amalfitano ◽  
Margot Karlikow ◽  
Masoud Norouzi ◽  
Katariina Jaenes ◽  
Seray Cicek ◽  
...  

AbstractRecent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2.


Biosensors ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Donggee Rho ◽  
Seunghyun Kim

An optical cavity-based biosensor (OCB) has been developed for point-of-care (POC) applications. This label-free biosensor employs low-cost components and simple fabrication processes to lower the overall cost while achieving high sensitivity using a differential detection method. To experimentally demonstrate its limit of detection (LOD), we conducted biosensing experiments with streptavidin and C-reactive protein (CRP). The optical cavity structure was optimized further for better sensitivity and easier fluid control. We utilized the polymer swelling property to fine-tune the optical cavity width, which significantly improved the success rate to produce measurable samples. Four different concentrations of streptavidin were tested in triplicate, and the LOD of the OCB was determined to be 1.35 nM. The OCB also successfully detected three different concentrations of human CRP using biotinylated CRP antibody. The LOD for CRP detection was 377 pM. All measurements were done using a small sample volume of 15 µL within 30 min. By reducing the sensing area, improving the functionalization and passivation processes, and increasing the sample volume, the LOD of the OCB are estimated to be reduced further to the femto-molar range. Overall, the demonstrated capability of the OCB in the present work shows great potential to be used as a promising POC biosensor.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 189
Author(s):  
Susana Campuzano ◽  
Paloma Yáñez-Sedeño ◽  
José Manuel Pingarrón

The multifaceted key roles of cytokines in immunity and inflammatory processes have led to a high clinical interest for the determination of these biomolecules to be used as a tool in the diagnosis, prognosis, monitoring and treatment of several diseases of great current relevance (autoimmune, neurodegenerative, cardiac, viral and cancer diseases, hypercholesterolemia and diabetes). Therefore, the rapid and accurate determination of cytokine biomarkers in body fluids, cells and tissues has attracted considerable attention. However, many currently available techniques used for this purpose, although sensitive and selective, require expensive equipment and advanced human skills and do not meet the demands of today’s clinic in terms of test time, simplicity and point-of-care applicability. In the course of ongoing pursuit of new analytical methodologies, electrochemical biosensing is steadily gaining ground as a strategy suitable to develop simple, low-cost methods, with the ability for multiplexed and multiomics determinations in a short time and requiring a small amount of sample. This review article puts forward electrochemical biosensing methods reported in the last five years for the determination of cytokines, summarizes recent developments and trends through a comprehensive discussion of selected strategies, and highlights the challenges to solve in this field. Considering the key role demonstrated in the last years by different materials (with nano or micrometric size and with or without magnetic properties), in the design of analytical performance-enhanced electrochemical biosensing strategies, special attention is paid to the methods exploiting these approaches.


Sign in / Sign up

Export Citation Format

Share Document