Caloric restriction-induced weight loss with a high-fat diet does not fully recover visceral adipose tissue inflammation in previously obese C57BL/6 mice

2020 ◽  
Vol 45 (12) ◽  
pp. 1353-1359
Author(s):  
M.O.M. Rodrigues ◽  
P.H. Evangelista-Silva ◽  
N.N. Neves ◽  
L.G. Moreno ◽  
C.S. Santos ◽  
...  

Caloric restriction (CR) reduces body weight and systemic inflammation, but the effects on adipose tissue under dietary lipid overload are controversial. We evaluated the effects of CR-induced weight loss with a high-fat diet on adipose tissue inflammation of obese mice. Male mice were assigned into low-fat diet (LF) and high-fat diet (HF) groups. After 8 weeks, the mice in the HF group were reassigned for another 7 weeks into the following 3 conditions: (i) kept in the HF condition; (ii) changed to low-fat diet ad libitum (LFAL); and (iii) changed to high-fat calorie-restricted (RHF) diet to reach LFAL body weight. Serum markers, adipocytokines, morphology, and inflammatory infiltrates in retroperitoneal adipose tissue (RAT) were accessed. The body weights of the LFAL and RHF groups were reduced, equaling the body weights of the LF group. The LFAL mice had restored almost all inflammatory markers as the LF mice, except tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and adiponectin. Compared with the HF group, the RHF group had lowered visceral adiposity, retroperitoneal adipocyte sizes, and RAT inflammatory cell infiltration, as well as TNF-α, interleukin-6, and hepatic and serum C-reactive protein, which were higher than that of the LFAL group; adiponectin and MCP-1 did not change. CR with high-fat diet reduced body weight and attenuated visceral adiposity but did not fully recover visceral tissue inflammation. Novelty Caloric restriction in a high-fat diet ameliorated visceral adiposity. Caloric restriction in a high-fat diet did not recover visceral adipose tissue inflammation.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Yunjung Baek ◽  
Mi Nam Lee ◽  
Dayong Wu ◽  
Munkyong Pae

Abstract Objectives Previously, we showed that loss of ovarian function in mice fed high-fat diet exacerbated insulin resistance and adipose tissue inflammation. In the current study, we tested whether consumption of luteolin, an anti-inflammatory flavonoid, could mitigate adipose tissue inflammation and insulin resistance in obese ovariectomized mice. Methods Nine-week-old ovariectomized C57BL/6 mice were fed a low-fat diet (LFD), high-fat diet (HFD), or HFD supplemented with 0.005% luteolin (HFD + L) for 16 weeks. The anti-inflammatory drug salicylate was used as a positive control. Fasting blood glucose, insulin, and insulin resistance index HOMA-IR were measured every 4 weeks. Adipose tissue and spleen were characterized for tissue inflammation by real-time PCR and immune cell populations by flow cytometry after 16 weeks of feeding. Results HFD resulted in more body weight gain than LFD in ovariectomized mice and supplementing HFD with 0.005% luteolin did not affect the body weight gain. In addition, HFD elicited a significant elevation in fat mass, which were comparable between HFD and HFD + L groups. However, luteolin supplementation resulted in a significant decrease in CD11c+ macrophages in gonadal adipose tissue, as well as a trend of decrease in macrophage infiltration. Luteolin supplementation also significantly decreased mRNA expression of inflammatory and M1 markers MCP-1, CD11c, TNF-a, and IL-6, while maintaining expression of M2 marker MGL1. We further found that luteolin treatment protected mice from insulin resistance induced by HFD consumption; this improved insulin resistance was correlated with reductions in CD11c+ adipose tissue macrophages. Conclusions Our findings indicate that dietary luteolin supplementation attenuates adipose tissue inflammation and insulin resistance found in mice with loss of ovarian function coupled with a HFD intake, and this effect may be partly mediated through suppressing M1-like polarization of macrophages in adipose tissue. These results have clinical implication in implementing dietary intervention for prevention of metabolic syndrome associated with postmenopause and obesity. Funding Sources Supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2018R1A1A1A05078886).


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2427
Author(s):  
Emily C. Graff ◽  
Han Fang ◽  
Desiree Wanders ◽  
Robert L. Judd

Obesity is an immunometabolic disease associated with chronic inflammation and the dysregulation of pro- and anti-inflammatory cytokines. One hallmark of obesity is reduced concentrations of the anti-inflammatory adipokine, adiponectin. Pharmacologic doses of niacin produce multiple metabolic benefits, including attenuating high-fat diet (HFD)-induced adipose tissue inflammation and increasing adiponectin concentrations. To determine if adiponectin mediates the anti-inflammatory effects of niacin, male C57BL/6J (WT) and adiponectin null (Adipoq-/-) mice were maintained on a low-fat diet (LFD) or HFD for 6 weeks, before being administered either vehicle or niacin (360 mg/kg/day) for 5 weeks. HFD-fed mice had increased expression of genes associated with macrophage recruitment (Ccl2) and number (Cd68), and increased crown-like structure (CLS) number in adipose tissue. While niacin attenuated Ccl2 expression, there were no effects on Cd68 or CLS number. The absence of adiponectin did not hinder the ability of niacin to reduce Ccl2 expression. HFD feeding increased gene expression of inflammatory markers in the adipose tissue of WT and Adipoq-/- mice. While niacin tended to decrease the expression of inflammatory markers in WT mice, niacin increased their expression in HFD-fed Adipoq-/- mice. Therefore, our results indicate that the absence of adiponectin alters the effects of niacin on markers of adipose tissue inflammation in HFD-fed mice, suggesting that the effects of niacin on tissue cytokines may involve adiponectin.


2013 ◽  
Vol 83 (5) ◽  
pp. 299-310 ◽  
Author(s):  
Monica Yamada ◽  
Marina Maintinguer Norde ◽  
Maria C. Borges ◽  
Tatiane Mieko de Meneses Fujii ◽  
Patrícia Silva Jacob ◽  
...  

The aim of this study was to investigate the real impact of dietary lipids on metabolic and inflammatory response in rat white adipose tissue. Male healthy Wistar rats were fed ad libitum with a control diet (CON, n=12) or with an adjusted high-fat diet (HFD, n=12) for 12 weeks. Oral glucose and insulin tolerance tests were performed during the last week of the protocol. Plasma fatty acid, lipid profile, body adiposity, and carcass chemical composition were analyzed. Plasma concentration of leptin, adiponectin, C-reactive protein (CRP), TNF-α, IL-6, and monocyte chemotactic protein (MCP-1) was measured. Periepididymal adipose tissue was employed to evaluate TNF-α, MCP-1, and adiponectin gene expression as well as NF-κB pathway and AKT proteins. Isocaloric intake of the adjusted HFD did not induce hyperphagia, but promoted an increase in periepididymal (HFD = 2.94 ± 0.77 vs. CON = 1.99 ± 0.26 g/100 g body weight, p = 0.01) and retroperitoneal adiposity (HFD = 3.11 ± 0.81 vs. CON = 2.08 ± 0.39 g/100 g body weight, p = 0.01) and total body lipid content (HFD = 105.3 ± 20.8 vs. CON = 80.5 ± 7.6 g carcass, p = 0.03). Compared with control rats, HFD rats developed glucose intolerance (p=0.01), dyslipidemia (p = 0.02) and exhibited higher C-reactive protein levels in response to the HFD (HFD = 1002 ± 168 vs. CON = 611 ± 260 ng/mL, p = 0.01). The adjusted HFD did not affect adipokine gene expression or proteins involved in inflammatory signaling, but decreased AKT phosphorylation after insulin stimulation in periepididymal adipose tissue (p = 0.01). In this study, nutrient-adjusted HFD did not induce periepididymal adipose tissue inflammation in rats, suggesting that the composition of HFD differently modulates inflammation in rats, and adequate micronutrient levels may also influence inflammatory pathways.


2019 ◽  
Vol 10 ◽  
Author(s):  
Takahiro Ohkura ◽  
Teizo Yoshimura ◽  
Masayoshi Fujisawa ◽  
Toshiaki Ohara ◽  
Rie Marutani ◽  
...  

Diabetes ◽  
2011 ◽  
Vol 60 (6) ◽  
pp. 1688-1698 ◽  
Author(s):  
F. C. McGillicuddy ◽  
K. A. Harford ◽  
C. M. Reynolds ◽  
E. Oliver ◽  
M. Claessens ◽  
...  

2015 ◽  
Vol 4 (2) ◽  
pp. 93-105 ◽  
Author(s):  
Sinem Karaman ◽  
Maija Hollmén ◽  
Marius R. Robciuc ◽  
Annamari Alitalo ◽  
Harri Nurmi ◽  
...  

2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 685-686
Author(s):  
Yair Pincu ◽  
Melissa A. Linden ◽  
Stephen A. Martin ◽  
Jeffrey A. Woods ◽  
Tracy Baynard

Sign in / Sign up

Export Citation Format

Share Document