Comparison of carbon and nitrogen storage in mineral soils of graminoid and shrub tundra sites, western Greenland

2016 ◽  
Vol 2 (4) ◽  
pp. 165-182 ◽  
Author(s):  
Chelsea L. Petrenko ◽  
Julia Bradley-Cook ◽  
Emily M. Lacroix ◽  
Andrew J. Friedland ◽  
Ross A. Virginia

Shrub species are expanding across the Arctic in response to climate change and biotic interactions. Changes in belowground carbon (C) and nitrogen (N) storage are of global importance because Arctic soils store approximately half of global soil C. We collected 10 (60 cm) soil cores each from graminoid- and shrub-dominated soils in western Greenland and determined soil texture, pH, C and N pools, and C:N ratios by depth for the mineral soil. To investigate the relative chemical stability of soil C between vegetation types, we employed a novel sequential extraction method for measuring organo-mineral C pools of increasing bond strength. We found that (i) mineral soil C and N storage was significantly greater under graminoids than shrubs (29.0 ± 1.8 versus 22.5 ± 3.0 kg·C·m−2 and 1.9 ± .12 versus 1.4 ± 1.9 kg·N·m−2), (ii) chemical mechanisms of C storage in the organo-mineral soil fraction did not differ between graminoid and shrub soils, and (iii) weak adsorption to mineral surfaces accounted for 40%–60% of C storage in organo-mineral fractions — a pool that is relatively sensitive to environmental disturbance. Differences in these C pools suggest that rates of C accumulation and retention differ by vegetation type, which could have implications for predicting future soil C pool storage.

2018 ◽  
Vol 8 ◽  
Author(s):  
Felícia Fonseca ◽  
Tomás Figueiredo

The organic and mineral horizons of soils are of great importance in C and N storage in forest areas. However, knowledge of the effects of forest species on the stocks of these elements is still scarce, especially in Portugal. In order to contribute to this knowledge, a study was carried out in forest stands of <em>Pinus pinaster</em> Aiton (PP), <em>Pinus nigra</em> Arnold (PN), <em>Pseudotsuga menziesii</em> (PM) and <em>Castanea sativa</em> Miller (CS), installed in the 1950s in northern Portugal. Sampling areas with similar topography, lithology and climate were selected, in order to better identify hypothesized differences in C and N storage due to forest species effect. In each stand, 15 sites were selected randomly and the forest floor (organic layers) was collected in a 0.49 m<sup>2</sup> area. The layers H, L and F of the forest floor were identified and, for L and F, their components were separated in leaves, pine cones/chestnut husks and branches. At the same sites, soil samples were also collected at 0-10 and 10-20 cm depth. At these depths, undisturbed samples were also collected for bulk density determination. The concentrations of C and N were determined in forest floor and mineral components of the soil, and converted in mass per unit area. The quantity of C storage per unit area followed the sequence PN &gt; PM &gt; CS &gt; PP, while for N the sequence was CS &gt; PM &gt; PN &gt; PP, OM and PP keeping the same relative position in the sequence in both C and N concentrations. The PM and CS species store similar amounts of C and N, and about 90% of these elements is found in the upper 20 cm of the mineral soil. In PN and PP species, the contribution of forest floor to the storage of these elements is more expressive than in the other species, but lower than 30% in all cases.


2017 ◽  
Author(s):  
Matthias Fuchs ◽  
Guido Grosse ◽  
Jens Strauss ◽  
Frank Günther ◽  
Mikhail Grigoriev ◽  
...  

Abstract. Ice rich Yedoma-dominated landscapes store considerable amounts of organic carbon (C) and nitrogen (N) and are vulnerable to degradation under climate warming. We investigate the C and N pools in two thermokarst-affected Yedoma landscapes – on Sobo-Sise Island and on Bykovsky Peninsula in the North of East Siberia. Soil cores up to three meters depth were collected along geomorphic gradients and analysed for organic C and N contents. A high vertical sampling density in the profiles allowed the calculation of C and N stocks for short soil column intervals and enhanced understanding of within-core parameter variability. Profile-level C and N stocks were scaled to the landscape level based on landform classifications from five-meter resolution, multispectral RapidEye satellite imagery. Mean landscape C and N storage in the first meter of soil for Sobo-Sise Island is estimated to be 20.2 kg C m−2 and 1.8 kg N m−2 and for Bykovsky Peninsula 25.9 kg C m−2 and 2.2 kg N m−2. Radiocarbon dating demonstrates the Holocene age of thermokarst basin deposits but also suggests the presence of thick Holocene aged cover layers which can reach up to two meters on top of intact Yedoma landforms. Reconstructed sedimentation rates of 0.10 mm yr−1–0.57 mm yr−1 suggest sustained mineral soil accumulation across all investigated landforms. Both Yedoma and thermokarst landforms are characterized by limited accumulation of organic soil layers (peat). We further estimate that an active layer deepening by about 100 cm will increase organic C availability in a seasonally thawed state in the two study areas by ~ 5.8 Tg (13.2 kg C m−2). Our study demonstrates the importance of increasing the number of C and N storage inventories in ice-rich Yedoma and thermokarst environments in order to account for high variability of permafrost and thermokarst environments in pan-permafrost soil C and N pool estimates.


2018 ◽  
Vol 15 (3) ◽  
pp. 953-971 ◽  
Author(s):  
Matthias Fuchs ◽  
Guido Grosse ◽  
Jens Strauss ◽  
Frank Günther ◽  
Mikhail Grigoriev ◽  
...  

Abstract. Ice-rich yedoma-dominated landscapes store considerable amounts of organic carbon (C) and nitrogen (N) and are vulnerable to degradation under climate warming. We investigate the C and N pools in two thermokarst-affected yedoma landscapes – on Sobo-Sise Island and on Bykovsky Peninsula in the north of eastern Siberia. Soil cores up to 3 m depth were collected along geomorphic gradients and analysed for organic C and N contents. A high vertical sampling density in the profiles allowed the calculation of C and N stocks for short soil column intervals and enhanced understanding of within-core parameter variability. Profile-level C and N stocks were scaled to the landscape level based on landform classifications from 5 m resolution, multispectral RapidEye satellite imagery. Mean landscape C and N storage in the first metre of soil for Sobo-Sise Island is estimated to be 20.2 kg C m−2 and 1.8 kg N m−2 and for Bykovsky Peninsula 25.9 kg C m−2 and 2.2 kg N m−2. Radiocarbon dating demonstrates the Holocene age of thermokarst basin deposits but also suggests the presence of thick Holocene-age cover layers which can reach up to 2 m on top of intact yedoma landforms. Reconstructed sedimentation rates of 0.10–0.57 mm yr−1 suggest sustained mineral soil accumulation across all investigated landforms. Both yedoma and thermokarst landforms are characterized by limited accumulation of organic soil layers (peat). We further estimate that an active layer deepening of about 100 cm will increase organic C availability in a seasonally thawed state in the two study areas by  ∼  5.8 Tg (13.2 kg C m−2). Our study demonstrates the importance of increasing the number of C and N storage inventories in ice-rich yedoma and thermokarst environments in order to account for high variability of permafrost and thermokarst environments in pan-permafrost soil C and N pool estimates.


2012 ◽  
Vol 42 (11) ◽  
pp. 1953-1964 ◽  
Author(s):  
Irene Fernandez ◽  
Juan Gabriel Álvarez-González ◽  
Beatríz Carrasco ◽  
Ana Daría Ruíz-González ◽  
Ana Cabaneiro

Forest ecosystems can act as C sinks, thus absorbing a high percentage of atmospheric CO2. Appropriate silvicultural regimes can therefore be applied as useful tools in climate change mitigation strategies. The present study analyzed the temporal changes in the effects of thinning on soil organic matter (SOM) dynamics and on soil CO2 emissions in radiata pine ( Pinus radiata D. Don) forests. Soil C effluxes were monitored over a period of 2 years in thinned and unthinned plots. In addition, soil samples from the plots were analyzed by solid-state 13C-NMR to determine the post-thinning SOM composition and fresh soil samples were incubated under laboratory conditions to determine their biodegradability. The results indicate that the potential soil C mineralization largely depends on the proportion of alkyl-C and N-alkyl-C functional groups in the SOM and on the microbial accessibility of the recalcitrant organic pool. Soil CO2 effluxes varied widely between seasons and increased exponentially with soil heating. Thinning led to decreased soil respiration and attenuation of the seasonal fluctuations. These effects were observed for up to 20 months after thinning, although they disappeared thereafter. Thus, moderate thinning caused enduring changes to the SOM composition and appeared to have temporary effects on the C storage capacity of forest soils, which is a critical aspect under the current climatic change scenario.


2014 ◽  
Vol 94 (6) ◽  
pp. 1025-1032 ◽  
Author(s):  
F. L. Walley ◽  
A. W. Gillespie ◽  
Adekunbi B. Adetona ◽  
J. J. Germida ◽  
R. E. Farrell

Walley, F. L., Gillespie, A. W., Adetona, A. B., Germida, J. J. and Farrell, R. E. 2014. Manipulation of rhizosphere organisms to enhance glomalin production and C-sequestration: Pitfalls and promises. Can. J. Plant Sci. 94: 1025–1032. Arbuscular mycorrhizal fungi (AMF) reportedly produce glomalin, a glycoprotein that has the potential to increase soil carbon (C) and nitrogen (N) storage. We hypothesized that interactions between rhizosphere microorganisms, such as plant growth-promoting rhizobacteria (PGPR), and AMF, would influence glomalin production. Our objectives were to determine the effects of AMF/PGPR interactions on plant growth and glomalin production in the rhizosphere of pea (Pisum sativum L.) with the goal of enhancing C and N storage in the rhizosphere. One component of the study focussed on the molecular characterization of glomalin and glomalin-related soil protein (GRSP) using complementary synchrotron-based N and C X-ray absorption near-edge structure (XANES) spectroscopy, pyrolysis field ionization mass spectrometry (Py-FIMS), and proteomics techniques to characterize specific organic C and N fractions associated with glomalin production. Our research ultimately led us to conclude that the proteinaceous material extracted, and characterized in the literature, as GRSP is not exclusively of AMF origin. Our research supports the established concept that GRSP is important to soil quality, and C and N storage, irrespective of origin. However, efforts to manipulate this important soil C pool will remain compromised until we more clearly elucidate the chemical nature and origin of this resource.


2004 ◽  
Vol 34 (7) ◽  
pp. 1538-1542 ◽  
Author(s):  
Heidi Steltzer

Soil carbon (C) and nitrogen (N) pools were measured under the canopy of 29 white spruce (Picea glauca (Moench) Voss) trees and in the surrounding tundra 3 and 6 m away from each tree at three sites of recent forest expansion along the Agashashok River in northwestern Alaska. The aim was to characterize the potential for forest expansion to lead to increased soil C pools across diverse tundra types. Soil C beneath the trees correlated positively with tree age, suggesting that tree establishment has led to C storage in the soils under their canopy at a rate of 18.5 ± 4.6 g C·m–2·year–1. Soil C in the surrounding tundra did not differ from those under the trees and showed no relationship to tree age. This characterization of the soil C pools at the 3-m scale strengthens the assertion that the pattern associated with the trees is an effect of the trees, because tree age cannot explain variation among tundra sampling locations at this scale. Potential mechanisms by which these white spruce trees could increase soil C pools include greater production and lower litter quality.


2021 ◽  
Author(s):  
Marlon Calispa ◽  
Raphaël van Ypersele ◽  
Benoît Pereira ◽  
Sebastián Páez-Bimos ◽  
Veerle Vanacker ◽  
...  

&lt;p&gt;The Ecuadorian p&amp;#225;ramo, a neotropical ecosystem located in the upper Andes, acts as a constant source of high-quality water. It also stores significant amounts of C at the regional scale. In this region, volcanic ash soils sustain most of the paramo, and C storage results partly from their propensity to accumulate organic matter. Vegetation type is known to influence the balance between plant C inputs and soil C losses, ultimately affecting the soil organic C (SOC) content and stock. Tussock-forming grass (spp. Calamagrostis Intermedia; TU), cushion-like plants (spp. Azorella pedunculata; CU) and shrubs and trees (Polylepis stands) are commonly found in the p&amp;#225;ramo. Our understanding of SOC stocks and dynamics in the p&amp;#225;ramo remains limited, despite mounting concerns that human activities are increasingly affecting vegetation and potentially, the capacity of these ecosystems to store C.&lt;/p&gt;&lt;p&gt;Here, we compare the organic C content and stock in soils under tussock-forming grass (spp. Calamagrostis Intermedia; TU) and soils under cushion-like plants (spp. Azorella pedunculata; CU). The study took place at Jatunhuayco, a watershed on the western slopes of Antisana volcano in the northern Ecuadorian Andes. Two areas of similar size (~0.35 km&lt;sup&gt;2&lt;/sup&gt;) were surveyed. Fourty soil samples were collected randomly in each area to depths varying from 10 to 30 cm (A horizon) and from 30 to 75 cm (2Ab horizon). The soils are Vitric Andosols and the 2Ab horizon corresponds to a soil buried by the tephra fall from the Quilotoa eruption about 800 yr. BP. Sixteen intact soil samples were collected in Kopecky's cylinders for bulk density (BD) determination of each horizon.&lt;/p&gt;&lt;p&gt;The average SOC content in the A horizon of the CU sites (9.4&amp;#177;0.5%) is significantly higher (Mann-Whitney U test, p&lt;0.05) than that of the TU sites (8.0&amp;#177;0.4%), probably reflecting a larger input of root biomass from the cushion-forming plants. The 2Ab horizon contains less organic C (i.e. TU: 4.3&amp;#177;0.3% and CU: 4.0&amp;#177;0.4%) than the A horizon, but the SOC contents are undistinguishable between the two vegetation types. This suggests that the influence of vegetation type on SOC is limited to the A horizon. The average SOC stocks (in the first 30 cm from the soil) for TU and CU are 20.04&amp;#177;1.1 and 18.23&amp;#177;1.0 kg/m&lt;sup&gt;2&lt;/sup&gt;,&lt;sup&gt;&lt;/sup&gt;respectively. These values are almost two times greater than the global average reported for Vitric Andosols (~8.2 kg/m&lt;sup&gt;2&lt;/sup&gt;&amp;#160;), but are lower than the estimates obtained for some wetter Andean p&amp;#225;ramos (22.5&amp;#177;5 kg/m&lt;sup&gt;2&lt;/sup&gt;, 270% higher rainfall) from Ecuador. Our stock values further indicate that vegetation type has a limited effect on C storage in the young volcanic ash soils found at Jatunhuyaco. Despite a higher SOC content, the CU soils store a stock of organic C similar to that estimated for the TU soils. This likely reflects the comparatively lower BD of the former soils (650&amp;#177;100 vs. 840&amp;#177;30 kg/m&lt;sup&gt;3&lt;/sup&gt;). Additional studies are needed in order to establish the vegetation-related factors driving the SOC content and stability in the TU and CU soils.&lt;/p&gt;


2018 ◽  
Vol 115 (11) ◽  
pp. 2776-2781 ◽  
Author(s):  
Lucas E. Nave ◽  
Grant M. Domke ◽  
Kathryn L. Hofmeister ◽  
Umakant Mishra ◽  
Charles H. Perry ◽  
...  

Soils are Earth’s largest terrestrial carbon (C) pool, and their responsiveness to land use and management make them appealing targets for strategies to enhance C sequestration. Numerous studies have identified practices that increase soil C, but their inferences are often based on limited data extrapolated over large areas. Here, we combine 15,000 observations from two national-level databases with remote sensing information to address the impacts of reforestation on the sequestration of C in topsoils (uppermost mineral soil horizons). We quantify C stocks in cultivated, reforesting, and natural forest topsoils; rates of C accumulation in reforesting topsoils; and their contribution to the US forest C sink. Our results indicate that reforestation increases topsoil C storage, and that reforesting lands, currently occupying >500,000 km2 in the United States, will sequester a cumulative 1.3–2.1 Pg C within a century (13–21 Tg C·y−1). Annually, these C gains constitute 10% of the US forest sector C sink and offset 1% of all US greenhouse gas emissions.


SOIL ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 195-213
Author(s):  
Benjamin Andrieux ◽  
David Paré ◽  
Julien Beguin ◽  
Pierre Grondin ◽  
Yves Bergeron

Abstract. Following a wildfire, organic carbon (C) accumulates in boreal-forest soils. The long-term patterns of accumulation as well as the mechanisms responsible for continuous soil C stabilization or sequestration are poorly known. We evaluated post-fire C stock changes in functional reservoirs (bioreactive and recalcitrant) using the proportion of C mineralized in CO2 by microbes in a long-term lab incubation, as well as the proportion of C resistant to acid hydrolysis. We found that all soil C pools increased linearly with the time since fire. The bioreactive and acid-insoluble soil C pools increased at a rate of 0.02 and 0.12 MgC ha−1 yr−1, respectively, and their proportions relative to total soil C stock remained constant with the time since fire (8 % and 46 %, respectively). We quantified direct and indirect causal relationships among variables and C bioreactivity to disentangle the relative contribution of climate, moss dominance, soil particle size distribution and soil chemical properties (pH, exchangeable manganese and aluminum, and metal oxides) to the variation structure of in vitro soil C bioreactivity. Our analyses showed that the chemical properties of podzolic soils that characterize the study area were the best predictors of soil C bioreactivity. For the O layer, pH and exchangeable manganese were the most important (model-averaged estimator for both of 0.34) factors directly related to soil organic C bioreactivity, followed by the time since fire (0.24), moss dominance (0.08), and climate and texture (0 for both). For the mineral soil, exchangeable aluminum was the most important factor (model-averaged estimator of −0.32), followed by metal oxide (−0.27), pH (−0.25), the time since fire (0.05), climate and texture (∼0 for both). Of the four climate factors examined in this study (i.e., mean annual temperature, growing degree-days above 5 ∘C, mean annual precipitation and water balance) only those related to water availability – and not to temperature – had an indirect effect (O layer) or a marginal indirect effect (mineral soil) on soil C bioreactivity. Given that predictions of the impact of climate change on soil C balance are strongly linked to the size and the bioreactivity of soil C pools, our study stresses the need to include the direct effects of soil chemistry and the indirect effects of climate and soil texture on soil organic matter decomposition in Earth system models to forecast the response of boreal soils to global warming.


2015 ◽  
Vol 12 (5) ◽  
pp. 1615-1627 ◽  
Author(s):  
J. D. M. Speed ◽  
V. Martinsen ◽  
A. J. Hester ◽  
Ø. Holand ◽  
J. Mulder ◽  
...  

Abstract. Treelines differentiate vastly contrasting ecosystems: open tundra from closed forest. Treeline advance has implications for the climate system due to the impact of the transition from tundra to forest ecosystem on carbon (C) storage and albedo. Treeline advance has been seen to increase above-ground C stocks as low vegetation is replaced with trees but decrease organic soil C stocks as old carbon is decomposed. However, studies comparing across the treeline typically do not account for elevational variation within the ecotone. Here we sample ecosystem C stocks along an elevational gradient (970 to 1300 m), incorporating a large-scale and long-term livestock grazing experiment, in the southern Norwegian mountains. We investigate whether there are continuous or discontinuous changes in C storage across the treeline ecotone, and whether these are modulated by grazing. We find that vegetation C stock decreases with elevation, with a clear breakpoint between the forest line and treeline above which the vegetation C stock is constant. C stocks in organic surface horizons of the soil were higher above the treeline than in the forest, whereas C stocks in mineral soil horizons are unrelated to elevation. Total ecosystem C stocks also showed a discontinuous elevational pattern, increasing with elevation above the treeline (8 g m−2 per metre increase in elevation), but decreasing with elevation below the forest line (−15 g m−2 per metre increase in elevation), such that ecosystem C storage reaches a minimum between the forest line and treeline. We did not find any effect of short-term (12 years) grazing on the elevational patterns. Our findings demonstrate that patterns of C storage across the treeline are complex, and should be taken account of when estimating ecosystem C storage with shifting treelines.


Sign in / Sign up

Export Citation Format

Share Document