Sexual reproduction in western red cedar (Thuja plicata)

1980 ◽  
Vol 58 (12) ◽  
pp. 1376-1393 ◽  
Author(s):  
John N. Owens ◽  
M. Molder

Pollen cones and seed cones ended dormancy in mid-February, microsporogenesis occurred in late February, and pollination occurred for about 1 week in early March. Pollen was shed at the two-celled stage. Pollination drops were exuded from only a few ovules at one time. Pollen contacting the pollination drop was rapidly taken in. The pollination drop was withdrawn into the micropyle which was later sealed by enlargement of cells lining the micropylar canal. Megasporogenesis occurred in late February but female gametophytes did not mature and fertilization did not occur until late May. An archegonial complex formed containing seven to nine archegonia, of which several usually were fertilized. Proembryo development varied depending upon the size and shape of the archegonia. Usually, a 12-celled, three-tiered proembryo formed by mid-June. Cleavage polyembryony was not observed. Embryos were mature by mid-August and most seed was shed in September and October.The potential seed set was only 16 seeds per cone and filled seed averaged only 2.6 per cone. Most potential seed was lost because of early ovule abortion from unknown causes, insect damage, or low temperatures at or shortly after pollination. Some potential seeds were lost because the ovules were not pollinated or the embryos aborted. These seeds were soft but nearly normal appearing and contained spongy female gametophyte tissue. Methods of maximizing seed production are suggested.


1980 ◽  
Vol 58 (8) ◽  
pp. 886-901 ◽  
Author(s):  
John N. Owens ◽  
Marje Molder

The phenology of sexual reproduction of Picea sitchensis (Bong.) Carr. was similar at the three sites on Vancouver Island, British Columbia, used in the study. As indicated by cell divisions, cone buds ended dormancy in early March, 2 weeks before dormancy ended in vegetative buds. Pollen mother cells underwent meiosis in mid-March and mature, saccate, four- or five-celled pollen was formed by late April. Megaspore mother cells underwent meiosis in late March and mature female gametophytes were developed by late May. Pollination occurred in late April. A pollination drop was produced by the nucellus and exuded between the two micropylar arms and pollen was drawn down into a nucellar depression where pollen germinated in late April. Fertilization occurred in early June and early stages of embryo development occurred by late June, 9 weeks after pollination. Cotyledons were initiated in late July and seed was mature by mid-August and shed during the early fall.Development of male and female gametophytes and embryos was similar to patterns shown for other species of Picea. In this study seed set was very poor and resulted primarily from a lack of pollination. Other contributing factors were female gametophyte abortion before fertilization, embryo abortion during early development, and insect damage.



2004 ◽  
Vol 34 (1) ◽  
pp. 261-265 ◽  
Author(s):  
Jean J Turgeon ◽  
Chuck Jones ◽  
M Isabel Bellocq

We measured seed cones of Tsuga canadensis (L.) Carrière, assessed seed potential (number of fertile scales × 2) and seed efficiency (number of filled seeds/seed potential), and estimated the impact of Eupithecia mutata Pearsall (Lepidoptera: Geometridae) and Megastigmus hoffmeyeri Walley (Hymenoptera: Torymidae) on seed production. Mean length, width, and volume of healthy cones varied little among sites from Ontario. Cones had about 28 scales; 13 were sterile. Seed potential and seed efficiency differed among sites, ranging from 25 to 31 ovules and 24% to 72%, respectively. The number of scales (both sterile and fertile) increased with cone volume, but the proportion of fertile scales was independent of cone size. The maximum proportion of cones infested by E. mutata was 21%. On average, each larva destroyed >90% of the filled seeds from each cone, thus from a practical perspective, the proportion of T. canadensis seeds destroyed per site was equivalent to the proportion of seed cones infested. The proportion of cones infested by M. hoffmeyeri ranged from 9% to 40%, but the proportion of seeds destroyed per site (range: 1.1%–6.1%) was much lower than that of E. mutata. The maximum number of M. hoffmeyeri-infested seeds per cone was seven. To our knowledge, this is the first report documenting cone traits of T. canadensis and the impact of E. mutata and M. hoffmeyeri.



2017 ◽  
Vol 11 (1) ◽  
pp. 79-81
Author(s):  
Kole F. Adelalu ◽  
Xiao-Jian Qu ◽  
Yan-Xia Sun ◽  
Tao Deng ◽  
Hang Sun ◽  
...  


IAWA Journal ◽  
2002 ◽  
Vol 23 (2) ◽  
pp. 201-211 ◽  
Author(s):  
Simon Ellis ◽  
Paul Steiner

Five wood species, Oregon ash (Fraxinus latifolia Benth.), Balau (Shorea spp.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Western red cedar (Thuja plicata Donn ex D. Don), and Trembling aspen (Populus tremuloides Michx.) were loaded in compression longitudinally, radially and tangentially. The wood cubes were conditioned to one of four moisture contents prior to loading. Small cubes were loaded until no void space remained after which samples were released and soaked in water. Stress /strain curves were recorded over the whole range of strain and cube thicknesses were recorded at the end of the compression, after release from the testing apparatus, and after soaking in water. Denser woods resulted in a greater Young’s modulus, higher levels of stress and shorter time to densification than did less dense woods. Higher initial moisture contents apparently increased the plasticity of the wood leading to a lower Young’s modulus and lower levels of stress during compression, greater springback after release of stress and greater recovery after swelling in water. Differences observed in the radial and tangential behaviours were believed to be due to the supporting action of the rays when the wood was compressed in the radial direction in balau and trembling aspen and to the relative difference between the lower density earlywood and higher density latewood regions in ash, Douglas-fir and western red cedar.



1967 ◽  
Vol 45 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Harold MacLean ◽  
Koji Murakami

Proof of structure is presented for another lignan of the thujaplicatin series, 2,3-dihydroxy-2-(4″-hydroxy-3″,5″-dimethoxybenzyl)-3-(4′-hydroxy-3′-methoxybenzyl)-butyrolactone (I) (dihydroxythujaplicatin methyl ether). Analytical and spectral (ultraviolet, infrared, and nuclear magnetic resonance) data on derivatives and degradation products, in addition to the parent compound, are presented.



PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12298
Author(s):  
Maokai Yan ◽  
Xingyue Jin ◽  
Yanhui Liu ◽  
Huihuang Chen ◽  
Tao Ye ◽  
...  

Background Sugarcane (Saccharum spontaneum L.), the major sugar and biofuel feedstock crop, is cultivated mainly by vegetative propagation worldwide due to the infertility of female reproductive organs resulting in the reduction of quality and output of sugar. Deciphering the gene expression profile during ovule development will improve our understanding of the complications underlying sexual reproduction in sugarcane. Optimal reference genes are essential for elucidating the expression pattern of a given gene by quantitative real-time PCR (qRT-PCR). Method In this study, based on transcriptome data obtained from sugarcane ovule, eighteen candidate reference genes were identified, cloned, and their expression levels were evaluated across five developmental stages ovule (AC, MMC, Meiosis, Mitosis, and Mature). Results Our results indicated that FAB2 and MOR1 were the most stably expressed genes during sugarcane female gametophyte development. Moreover, two genes, cell cycle-related genes REC8 and CDK, were selected, and their feasibility was validated. This study provides important insights into the female gametophyte development of sugarcane and reports novel reference genes for gene expression research on sugarcane sexual reproduction.



Botany ◽  
2008 ◽  
Vol 86 (11) ◽  
pp. 1343-1353 ◽  
Author(s):  
Rocio E. Escobar-Guzmán ◽  
Flor Zamudio Hernández ◽  
Katia Gil Vega ◽  
June Simpson

Agave tequilana Weber var. azul is the raw material used in the production of tequila. This species has a life cycle of approximately 6–8 years; however, owing to the practice of removing the inflorescence to conserve accumulated sugar reserves, the main form of reproduction is asexual. Little attention has, therefore, been paid to the process of flowering and the factors leading to low levels of germination and seedling viability have not been investigated in detail. The objective of this study was to document gametophyte development, seed production, and germination in A. tequilana under different pollination treatments and in an interspecies cross with Agave americana L. Seed production and germination efficiency was low for both A. tequilana and A. americana under the different pollination treatments, although interspecies crosses did produce some viable seeds. Development of the male gametophyte in both species is of the successive type, producing pollen grains with dicolpate morphology. Female gametophyte development is of the Polygonum monosporic type. The results obtained suggest that genetic incompatibility, inbreeding effects, factors affecting pollen development and germination, or errors in female gametophyte development may contribute to the low fertility observed for A. tequilana and A. americana.



2001 ◽  
Vol 52 (10) ◽  
pp. 973 ◽  
Author(s):  
B. S. Dear ◽  
J. M. Virgona ◽  
G. A. Sandral ◽  
A. D. Swan ◽  
B. A. Orchard

Seed production of subterranean clover (Trifolium subterraneum L.) in mixtures with lovegrass (Eragrostis curvula (Schrader) Nees cv. Consol), cocksfoot (Dactylis glomerata L. cv. Currie), phalaris (Phalaris aquatica L. cv. Sirolan), danthonia (Austrodanthonia richardsonii (Cashm.) H.P. Linder, cv. Taranna), and lucerne (Medicago sativa L. cv. Aquarius) was compared with pure and degraded (invaded by annual volunteers) annual subterranean clover pasture at 2 sites (Junee and Kamarah) in the southern wheatbelt of New South Wales. Seed yields, clover seedlings in winter, and the change in the proportion of 3 subterranean clover cultivars (Dalkeith, Seaton Park, Goulburn) when grown with and without perennials were assessed. The effect of thinning the perennials to 10 plants/m2 on clover seed set was examined at the drier site. Seed production of subterranean clover in the mixtures was depressed by up to 50% compared with the pure and degraded annual swards. Initial clover seed poduction in the mixtures was at least 60 kg/ha even in the drought year at the wetter site (Junee), and >85 kg/ha at Kamarah, the drier site (seedling establishment at Kamarah failed in the drought year). Clover seed reserves in the following 2 years progressively increased to >300 kg/ha in the perennial swards at Junee but were <100 kg/ha by the end of the third year at Kamarah. In comparison, seed reserves in the pure clover and degraded annual swards were >650 kg/ha at Junee and >350 kg/ha at Kamarah. Reducing perennial density to 10 plants/m2 at the drier site increased clover seed yield about 3-fold in the first year compared with unthinned perennial swards. The increased seed yield was due to increased numbers of burrs set and increased seeds per burr and, in all perennial pasture treatments except lucerne, increased seed size. Clover seedling regeneration in 3rd and 4th year after sowing was substantially lower in the perennial-based mixtures than annual plots, with a significant (P < 0.05) positive correlation at both sites between clover seedling regeneration and seed bank size (1996, r2 = 0.46–0.64; 1997, r2 = 0.64–0.85). Following false breaks in early autumn, clover seedling populations were substantially higher in the pure and degraded clover treatments than in most perennial treatments. The proportion of the 3 cultivars present in the seed bank at the end of the pasture phase differed between sites but the sward type only influenced the proportion at the drier site. At the medium rainfall site, the later maturing cultivar Goulburn constituted 27–54% of the seed bank and the early flowering Dalkeith 25–46%, with unsown cultivars being insignificant ( <1%). At the low rainfall site, Dalkeith was the major component (33–52%) of the seed bank but the background population of unsown cultivars constituted 11–48%, the lowest proportion being in swards without a perennial component. The proportion of Goulburn was highest (23%) in the pure sward and lowest (10%) in lucerne and phalaris. It was concluded that subterranean clover could form relatively stable mixtures with perennials in medium rainfall environments, with clover populations increasing with time. In lower rainfall environments, clover seedling populations in perennial swards may be low due to reduced seed set and decreased seedling survival following early autumn rains. In these environments earlier maturing, hard-seeded cultivars are more likely to persist in mixtures and there is more potential for unsown cultivars to constitute a greater proportion of the sward. Decreasing perennial density offers scope for improving clover seed set and survival in these environments.



1976 ◽  
Vol 27 (6) ◽  
pp. 755 ◽  
Author(s):  
KC Hodgkinson

The effects of extent and frequency of defoliation on the growth and survival of Danthonia caespitosa were measured in a series of field experiments. Additional treatments, of summer irrigation and application of nitrogen and phosphorus fertilizer, were included in some of the experiments to assess how they modified the effects of defoliation. During the summer, complete defoliation increased the shoot yield of plants which had not been irrigated, but yield was decreased in the irrigated treatments. Frequent, partial defoliation increased yields of irrigated plants but decreased yields of plants not irrigated. Depression of yields was caused by both tiller death and reduced regrowth of individual tillers. In an experiment lasting 2 years, plants were completely defoliated monthly, bimonthly or tri-monthly or left intact, and shoot yields, tillering characteristics and plant survival under the treatments were compared. Monthly defoliation depressed yields and rate of tillering and accelerated the death rate of plants, particularly during the summer and autumn periods. Plants also died when cut bimonthly but the rate was slower. Plants irrigated during the first summer generally died at a faster rate than plants not irrigated. Tillering was more rapid during the autumn and early winter months. Midwinter application of fertilizer to plants cut bimonthly greatly stimulated shoot yields and seed production in the spring but not in the following year. Examination of tiller apices showed that floral induction took place prior to the beginning of July. Many apices were elevated above the 'grazing level' by early September, and flowering and seed set occurred in October.



Sign in / Sign up

Export Citation Format

Share Document