Interaction of cytokinins with lipid-associated oxy free radicals during senescence: a prospective mode of cytokinin action

1984 ◽  
Vol 62 (12) ◽  
pp. 2943-2949 ◽  
Author(s):  
Ya'acov Y. Leshem

In senescence physiology, experimental data indicate causative relationships among cytokinin, lipoxygenation, anti-oxidation, and lipid-associated free radical scavenging. During both normal and induced senescence, there is a rise in lipoxygenase (LOX) which catalyzes the oxidation of polyunsaturated fatty acids containing the cis, cis-1,4-pentadiene configuration. These include linoleic and linolenic acids, which are of common occurrence in plants and inter alia may be situated in membranal phospholipids. Lipoxygenation causes the production of free radicals such as the superoxide, fatty acid, and peroxy species. Cytokinin (CK) lowers LOX and superoxide dismutase activities significantly in senescing foliage and is mimicked by the endogenous lipid antioxidant, α-tocopherol (vitamin E), in its chlorophyll-retaining and LOX-lowering effects. Further experimentation indicated that CK interaction with free radicals may occur in two ways, (i) CK may act as a direct free radical scavenger by virtue of the fact that the hydrogens of the α-carbon atom in the amine bond can be extracted, resulting in the formation of an amide: [Formula: see text][Formula: see text] (this mechanism may also, in part, explain polyamine effects), (ii) CK may serve as an incipient preventative of free radical formation by inhibiting oxidation of plant purine compounds, which at certain stages of breakdown release superoxide and hydroxyl free radicals. This effect is probably associated with a lowering of substrate affinity for xanthine oxidase. This assumption is further borne out by similar senescence-retarding effects of selective xanthine oxidase inhibitors such as allopurinol. These observations collectively indicate that prevention of free radical formation and (or) their direct scavenging should be included in the multifactorial antisencscence mode of action of cytokinin.

2002 ◽  
Vol 88 (6) ◽  
pp. 2909-2918 ◽  
Author(s):  
Richard Kovács ◽  
Sebastian Schuchmann ◽  
Siegrun Gabriel ◽  
Oliver Kann ◽  
Julianna Kardos ◽  
...  

Generation of free radicals may have a key role in the nerve cell damage induced by prolonged or frequently recurring convulsions (status epilepticus). Mitochondrial function may also be altered due to production of free radicals during seizures. We therefore studied changes in field potentials (fp) together with measurements of extracellular, intracellular, and intramitochondrial calcium concentration ([Ca2+]e, [Ca2+]i, and [Ca2+]m, respectively), mitochondrial membrane potential (ΔΨ), NAD(P)H auto-fluorescence, and dihydroethidium (HEt) fluorescence in hippocampal slice cultures by means of simultaneous electrophysiological and microfluorimetric measurements. As reported previously, each seizure-like event (SLE) resulted in mitochondrial depolarization associated with a delayed rise in oxidation of HEt to ethidum, presumably indicating ROS production. We show here that repeated SLEs led to a decline in intracellular and intramitochondrial Ca2+ signals despite unaltered Ca2+ influx. Also, mitochondrial depolarization and the NAD(P)H signal became smaller during recurring SLEs. By contrast, the ethidium fluorescence rises remained constant or even increased from SLE to SLE. After about 15 SLEs, activity changed to continuous afterdischarges with steady depolarization of mitochondrial membranes. Staining with a cell death marker, propidium iodide, indicated widespread cell damage after 2 h of recurring SLEs. The free radical scavenger, α-tocopherol, protected the slice cultures against this damage and also reduced the ongoing impairment of NAD(P)H production. These findings suggest involvement of reactive oxygen species (ROS) of mitochondrial origin in the epileptic cell damage and that free radical scavenging may prevent status epilepticus–induced cell loss.


1978 ◽  
Vol 51 (1) ◽  
pp. 81-88 ◽  
Author(s):  
M. Jamroz˙ ◽  
K. Kozłowski ◽  
M. Sieniakowski ◽  
B. Jachym

Abstract The problem of rubber reinforcement is of great importance in rubber technology. Free radicals formed during mastication play an important role in the reinforcement of the rubber-filler system. The reinforcement of rubber systems is usually explained in terms of chemical interactions between rubber and filler; however, there are also opinions that the interactions are physical in nature. So far, the mechanism of reinforcement is an open question. Undoubtedly, reinforcement is influenced by free radicals formed during mastication and the physicochemical state of the surface of active fillers. The formation of free radicals during plasticization of rubbers has been already reported. Investigations by an ESR technique of free-radical formation during compounding of rubbers with various carbon blacks are described in the present paper.


1987 ◽  
Vol 253 (3) ◽  
pp. H709-H711 ◽  
Author(s):  
L. J. Eddy ◽  
J. R. Stewart ◽  
H. P. Jones ◽  
T. D. Engerson ◽  
J. M. McCord ◽  
...  

Samples from four human hearts were analyzed for both their xanthine dehydrogenase and xanthine oxidase content. We used the conventional spectrophotometric assay and a more sensitive fluorometric assay to determine the content of enzyme in these samples. In no case could any activity be detected. We conclude that human hearts must contain less than 2.0 nU/g of activity. This makes it unlikely that xanthine oxidase is a significant source of O2 free radicals in the ischemic human heart or that xanthine oxidase inhibitors will be of therapeutic value in that setting.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Paweł Olczyk ◽  
Pawel Ramos ◽  
Katarzyna Komosinska-Vassev ◽  
Lukasz Mencner ◽  
Krystyna Olczyk ◽  
...  

Free radicals thermally generated in the ointments containing propolis were studied by electron paramagnetic resonance (EPR) spectroscopy. The influence of temperature on the free radical concentration in the propolis ointments was examined. Two ointment samples with different contents of propolis (5 and 7%, resp.) heated at temperatures of 30°C, 40°C, 50°C, and 60°C, for 30 min., were tested. Homogeneously broadened EPR lines and fast spin-lattice interactions characterized all the tested samples. Free radicals concentrations in the propolis samples ranged from 1018 to 1020 spin/g and were found to grow in both propolis-containing ointments along with the increasing heating temperature. Free radical concentrations in the ointments containing 5% and 7% of propolis, respectively, heated at temperatures of 30°C, 40°C, and 50°C were only slightly different. Thermal treatment at the temperature of 60°C resulted in a considerably higher free radical formation in the sample containing 7% of propolis when related to the sample with 5% of that compound. The EPR examination indicated that the propolis ointments should not be stored at temperatures of 40°C, 50°C, and 60°C. Low free radical formation at the lowest tested temperatures pointed out that both examined propolis ointments may be safely stored up to the temperature of 30°C.


2008 ◽  
Vol 36 (01) ◽  
pp. 197-207 ◽  
Author(s):  
Fang-Yun Sun ◽  
Xiu-Ping Chen ◽  
Jin-Hua Wang ◽  
Hai-Lin Qin ◽  
Su-Rong Yang ◽  
...  

This study was designed to investigate the antioxidant and free radical scavenging capacities of arjunic acid, an aglycone obtained from the fruit of medicine Terminalia Fruit. Liver microsomes, mitochondria, and red blood cells (RBCs) were prepared from Wistar rats. The antioxidant capacity was determined by the inhibitory effect on lipid peroxidation, hydrogen peroxide induced RBCs hemolysis, and RBCs autoxidative hemolysis. The free radical scavenging activity was tested by DPPH method and 2′,7′-dichlorodihydrofluoresc in diacetate (DCFH2-DA) assay. Ascorbic acid was chosen as the positive controls. Results showed that arjunic acid was a strong antioxidant and a free radical scavenger, more potent than ascorbic acid, in microsomes lipid peroxidation, DPPH, hydrogen peroxide induced RBCs hemolysis, and (DCFH2-DA) assay (p < 0.05). However, no significant difference was observed in the RBCs autoxidative hemolysis assay (p > 0.05).


2004 ◽  
Vol 59 (11-12) ◽  
pp. 811-815 ◽  
Author(s):  
Habsah Mohamad ◽  
Faridah Abas ◽  
Dharma Permana ◽  
Nordin H. Lajis ◽  
Abdul Manaf Ali ◽  
...  

The methanol extract of the dried ripe fruits of Alpinia rafflesiana was investigated for its DPPH free radical scavenger constituents. 2′,3′,4′,6′-Tetrahydroxychalcone (7), which has never been isolated from natural sources was found to be most active as a DPPH free radical scavenger with the IC50 value of 55 μᴍ. Other known compounds isolated from this species include 5,6-dehydrokawain (1), flavokawin B (2), 1,7-diphenyl-5-hydroxy-6-hepten-3-one (3), (-)-pinocembrin (4), cardamonin (5) and (-)-pinostrobin (6). The DPPH free radical scavenger compounds were detected using TLC autographic analysis. The percentage inhibition of DPPH free radical scavenging activity was measured on isolates (5-7) using colorimetric analysis.


Sign in / Sign up

Export Citation Format

Share Document