Nodulation speed of Frankia sp. on Alnus glutinosa, Alnus crispa, and Myrica gale

1985 ◽  
Vol 63 (7) ◽  
pp. 1292-1295 ◽  
Author(s):  
Xavier Nesme ◽  
Philippe Normand ◽  
Francine M. Tremblay ◽  
Maurice Lalonde

The question of compatibility between actinorhizal host plants and Frankia sp. was addressed using nodulation speed on Alnus spp. seedlings and Myrica gale seedlings. It was found that the speed of nodulation, defined as the mean time taken for the formation of the first prenodule, was a stable phenotype of both the Frankia strains and the host plants and that a distinction between slow-, medium-, and fast-nodulating Frankia strains could be made. The speed of nodulation of a given Frankia strain did not appear to be positively correlated to the original host plant from which isolation was first performed. It was, however, positively correlated with the Frankia strain and with the host plant species used for inoculation. Some optimal host plant – endophyte combinations were thus defined. Pure spore inocula of Frankia and in vitro propagated Alnus glutinosa plantlets were used to confirm that both the host plant and the microbial partners genetically influenced the nodulation process.

Author(s):  
Marcin W. Zielonka ◽  
Tom W. Pope ◽  
Simon R. Leather

Abstract The carnation tortrix moth, Cacoecimorpha pronubana (Hübner, [1799]) (Lepidoptera: Tortricidae), is one of the most economically important insect species affecting the horticultural industry in the UK. The larvae consume foliage, flowers or fruits, and/or rolls leaves together with silken threads, negatively affecting the growth and/or aesthetics of the crop. In order to understand the polyphagous behaviour of this species within an ornamental crop habitat, we hypothesized that different host plant species affect its life history traits differently. This study investigated the effects of the host plant species on larval and pupal durations and sizes, and fecundity (the number of eggs and the number and size of egg clutches). At 20°C, 60% RH and a 16L:8D photoperiod larvae developed 10, 14, 20 and 36 days faster when reared on Christmas berry, Photinia (Rosaceae), than on cherry laurel, Prunus laurocerasus (Rosaceae), New Zealand broadleaf, Griselinia littoralis (Griseliniaceae), Mexican orange, Choisya ternata (Rutaceae), and firethorn, Pyracantha angustifolia (Rosaceae), respectively. Female pupae were 23.8 mg heavier than male pupae, and pupal weight was significantly correlated with the duration of larval development. The lowest and the highest mean numbers of eggs were produced by females reared on Pyracantha (41) and Photinia (202), respectively. Clutch size differed significantly among moths reared on different host plants, although the total number of eggs did not differ. This study showed that different ornamental host plants affect the development of C. pronubana differently. Improved understanding of the influence of host plant on the moth's life history parameters measured here will help in determining the economic impact that this species may have within the ornamental plant production environment, and may be used in developing more accurate crop protection methodologies within integrated pest management of this insect.


Nematology ◽  
2004 ◽  
Vol 6 (3) ◽  
pp. 375-387 ◽  
Author(s):  
N. Aileen Ryan ◽  
Peter Jones

AbstractSeventy bacteria, isolated from the rhizosphere of the potato cyst nematode (PCN) host plant, potato, were cultured in the presence and absence of potato root leachate (PRL) and the resultant culture filtrates were analysed for their ability to affect the hatch in vitro of the two PCN species. Of the isolates tested, nine had a significant effect on PCN hatch. Six affected Globodera pallida hatch and three affected G. rostochiensis hatch. Five of the isolates significantly increased hatch only when cultured in the presence of PRL. Three of the isolates decreased PCN hatch significantly in PRL. Only one isolate increased hatch significantly in the absence of PRL. No isolate affected the hatch of both species. Six of the nine isolates that significantly affected PCN hatch had been pre-selected by culturing on PRL. Bacterial isolates from PCN non-hosts (14 from wheat, 17 from sugar beet) were also tested for hatching activity. The principal effect of the hatch-active isolates from the PCN non-host plants was to increase PCN hatch in the presence of PRL. In contrast to the host bacteria results, the isolates from non-host plants affected only G. rostochiensis hatch (three wheat isolates and four sugar beet isolates significantly increased G. rostochiensis hatch); no such isolate affected G. pallida hatch significantly in the presence of PRL. Ten isolates (32%) from non-host plants had the ability to increase significantly the hatch of PCN in the absence of PRL (eight of these affected G. rostochiensis hatch and four affected G. pallida hatch), compared to only one bacterial isolate (1%) from a host plant. The majority of the isolates from non-hosts produced PCN species-specific effects, as with the bacteria isolated from potatoes, although two wheat isolates increased the hatch of both species significantly in the absence of PRL. Of 20 hatch-active bacterial isolates (from all three plants) identified, 70% were Bacillus spp. Other genera identified were Arthrobacter , Acinetobacter and Staphylococcus .


Zootaxa ◽  
2020 ◽  
Vol 4802 (2) ◽  
pp. 317-334
Author(s):  
GAMZE KARACA ◽  
YUSUF KATILMIŞ

Field surveys were carried out to determine the richness of the Cynipidae fauna of Kazdağı National Park, located on the border of Edremit county (Balıkesir province, Turkey). Gall samples of cynipids were collected or photographed on Quercus and Rosa host plants. As a result, 53 cynipid species belonging to 3 different tribes were found or observed in the surveyed area. 14 and 8 species were recorded as new for the Cynipidae fauna of Balıkesir and Çanakkale provinces respectively, including the first locality record of Andricus hystrix Trotter, 1897 for Turkey. In addition, color photos of reared cynipid wasps from their galls and the observed cynipid galls on their host plant species are presented. 


2019 ◽  
Vol 59 ◽  
pp. e20195904 ◽  
Author(s):  
Amanda Das Neves Ribeiro ◽  
Maria Isabel Protti de Andrade Balbi ◽  
Maria Virginia Urso-Guimarães

Herein, we studied the occurrence of insect galls from natural vegetation around the Itambé Cave, Altinópolis, SP, Brazil. A sampling effort of 7.5 hours resulted in 41 gall morphotypes on 21 host plant species from 14 families. The richest families of host plants in morphotypes were Fabaceae (N = 11), Euphorbiaceae (N = 7), and Malpighiaceae (N = 5). Copaifera langsdorffii Desf. (N = 8), Croton floribundus Spreng. (N = 7), Diplopterys pubipetala (A. Juss.) W.R. Anderson & C.C. Davis (N = 5), and Bauhinia holophylla (Bong.) Steud. (N = 4) were the super host plant species. Among the gall makers obtained, cecidomyiids were reared in 81% of cases and Hemiptera (Diaspididae), Hymenoptera (Eurytomidae), Coleoptera (Apion sp./Apionidae), and Lepidoptera in 4.5% of cases, each. The parasitoids belong to the Chalcidoidea superfamily (Hymenoptera). One new species of Camptoneuromyiia (Cecidomyiidae) was found in Smilax oblongifolia Pohl ex Griseb. (Smilacaceae) as inquiline and a new species of Lestodiplosis in Diplopterys pubipetala (Malpighiaceae) was a predator. We also present the first register of Bauhinia holophylla as host plants of Cecidomyiidae, and we expand the occurrence of Rochadiplosis tibouchinae Tavares and Couridiplosis vena to São Paulo State. The results of this paper are a continuation of the description of gall morphotypes from the vegetation in Northeastern São Paulo State, and they also increase knowledge about the diversity of host plant and gall-maker associations in the Neotropical region.


2011 ◽  
Vol 11 (1) ◽  
pp. 47-56
Author(s):  
Hendrival Hendrival ◽  
Purnama Hidayat ◽  
Ali Nurmansyah

The study of host range and population dynamic of B. tabaci in red chili pepper fiel dswas conducted in Sub-district of Pakem, District of Sleman, Province of Daerah Istimewa Yogyakarta during dry season of May-October 2009. The study of host plants of B. tabaci from the red chili pepper fields revealed that there were 27 species of host plants belong to 22 genera of 13 families including crops and weeds. The host plants belong to families of Araceae, Amaranthaceae, Asteraceae, Brassicaceae, Capparidaceae, Convolvulaceae, Euphorbiaceae, Lamiaceae, Oxalidaceae, Papilionaceae, Rubiaceae, Solanaceae and Sterculiaceae. The host plant families of Asteraceae and Euphorbiaceae had the most abundant population of B. tabaci. Geminivirus-like symptoms were found in the weeds of A. conyzoides and A. boehmerioides. Population of B. tabaci adults correlated with abundance of host plant species found in the red chili pepper fields. The population of B. tabaci in red chili pepper fields was affected by natural enemy population. Population dynamic of the parasitoid Eretmocerus sp. correlated with population dynamic of the parasitized nymph of B. tabaci. Parasitoid Eretmocerus sp. was potentially good in controlling population of B. tabaci nymph in red chili pepper fields.


2019 ◽  
Author(s):  
Yuxin Cheng ◽  
Na Zhang ◽  
Saddam Hussain ◽  
Sajjad Ahmed ◽  
Wenting Yang ◽  
...  

AbstractThe CRISPR/Cas9 genome editing technique has been widely used to generate transgene-free mutants in different plant species. Several different methods including fluorescence marker-assisted visual screen of transgene-free mutants and programmed self-elimination of CRISPR/Cas9 construct have been use to increase the efficiency of genome edited transgene-free mutants isolation, but the overall time length required to obtain transgene-free mutants has remained unchanged in these methods. We report here a method for fast generation and easy identification of transgene-free mutants in Arabidopsis. By generating and using a single FT expression cassette-containing CRISPR/Cas9 construct, we targeted two sites of the AITR1 gene. We obtained many early bolting plants in T1 generation, and found that about two thirds of these plants have detectable mutations. We then analyzed T2 generations of two representative lines of genome edited early bolting T1 plants, and identified plants without early bolting phenotype, i.e., transgene-free plants, for both lines. Further more, homologues aitr1 mutants were successful obtained for both lines from these transgene-free plants. Taken together, these results suggest that the method described here enables fast generation, and at the mean time, easy identification of transgene-free mutants in plants.


2018 ◽  
Vol 68 (4) ◽  
pp. 333-352 ◽  
Author(s):  
V.S. Nagrare ◽  
Bhausaheb Naikwadi ◽  
Vrushali Deshmukh ◽  
S. Kranthi

Abstract The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), is an invasive pest of cotton, apart from several other important crops, and poses a serious threat to agricultural economy all over the world. Studies on the biology and population growth parameters of P. solenopsis on the five most preferred host plants, namely cotton (Gossypium hirsutum L.) (Malvaceae), China rose (Hibiscus rosa-sinensis L.) (Malvaceae), tomato (Lycopersicon esculentum Mill.) (Solanaceae), congress grass (Parthenium hysterophorus L.) (Asteraceae) and okra (Abelmoschus esculentus (L.) Moench) (Malvaceae) were undertaken in the laboratory under controlled temperature and relative humidity. The mean cumulative development time of females was 16.61 days on cotton, 14.16 days on China rose, 14.13 days on okra, 14.00 days on tomato and 13.57 days on congress grass. The longest oviposition period was recorded on cotton (15.20 ± 1.87 days), while it was in the range of 9-10 days in the remaining host plants. Females lived longer (27.40 ± 1.76 days) when reared on cotton, while their life was shortest on tomato (14.60 ± 0.96 days). The highest fecundity was observed on cotton (328.30 ± 23.42), whereas it was found to be in the range 178-212 on the other hosts. The survival frequency from crawler to adult in females was highest on cotton (27.53%), while it was the lowest on tomato (15.87%). The highest net reproductive rate (284.3 females/female/generation), mean length of a generation (31.24 days), and intrinsic rate of increase (0.19 day−1) were recorded on cotton. The finite rate of increase was in the range of 1.18-1.20 (females/female/day) for all the selected host plants. The weekly multiplication rate was highest on China rose and congress grass (3.78), while it was the least on tomato (3.28). The corrected generation time was dissimilar in all the selected host plants, being highest on cotton (31.39 days) and the least on congress grass (27.71 days). The doubling time was shortest on congress grass (3.61 days), while it was longest on tomato (4.11 days). Hence, the host plant species significantly affects population growth of P. solenopsis.


2020 ◽  
Vol 96 (11) ◽  
Author(s):  
S S Botnen ◽  
E Thoen ◽  
P B Eidesen ◽  
A K Krabberød ◽  
H Kauserud

ABSTRACT The number of plant species regarded as non-mycorrhizal increases at higher latitudes, and several plant species in the High-Arctic Archipelago Svalbard have been reported as non-mycorrhizal. We used the rRNA ITS2 and 18S gene markers to survey which fungi, as well as other micro-eukaryotes, were associated with roots of 31 arctic plant species not usually regarded as mycorrhizal in Svalbard. We assessed to what degree the root-associated fungi showed any host preference and whether the phylogeny of the plant hosts may mirror the composition of root-associated fungi. Fungal communities were largely structured according to host plant identity and to a less extent by environmental factors. We observed a positive relationship between the phylogenetic distance of host plants and the distance of fungal community composition between samples, indicating that the evolutionary history of the host plants plays a major role for which fungi colonize the plant roots. In contrast to the ITS2 marker, the 18S rRNA gene marker showed that chytrid fungi were prevalently associated with plant roots, together with a wide spectrum of amoeba-like protists and nematodes. Our study confirms that arbuscular mycorrhizal (AM) fungi are present also in arctic environments in low abundance.


Insects ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 285 ◽  
Author(s):  
Alejandra Basoalto ◽  
Claudio C. Ramírez ◽  
Blas Lavandero ◽  
Luis Devotto ◽  
Tomislav Curkovic ◽  
...  

The codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is a major pest introduced to almost all main pome fruit production regions worldwide. This species was detected in Chile during the last decade of the 19th century, and now has a widespread distribution in all major apple-growing regions. We performed an analysis of the genetic variability and structure of codling moth populations in Chile using five microsatellite markers. We sampled the codling moth along the main distribution area in Chile on all its main host-plant species. Low genetic differentiation among the population samples (FST = 0.03) was found, with only slight isolation by distance. According to a Bayesian assignment test (TESS), a group of localities in the coastal mountain range from the Bío-Bío Region formed a distinct genetic cluster. Our results also suggest that the codling moth that invaded the southernmost locality (Aysén Region) had two origins from central Chile and another unknown source. We did not find significant genetic differentiation between codling moth samples from different host-plant species. Our results indicate high genetic exchange among codling moth populations between the different Chilean regions and host plants.


Sign in / Sign up

Export Citation Format

Share Document