Effect of fire on the mycorrhizal ecology of little bluestem (Schizachyrium scoparium)

1988 ◽  
Vol 66 (4) ◽  
pp. 706-713 ◽  
Author(s):  
Shivcharn S. Dhillion ◽  
Roger C. Anderson ◽  
Anthony E. Liberta

Fire in a prairie significantly affected subsequent vesicular–arbuscular mycorrhizal (VAM) fungal colonization and sporulation, plant aboveground production, and tissue inorganic nutrient concentration. Colonization levels of VAM fungi in little bluestem (Schizachyrium scoparium (Michx.) Nash) roots were significantly (p < 0.05) lower on the burned site than on the unburned site during the first growing season postburn, but there were no significant differences between sites during the 2nd year. On each sampling date during the first growing season postburn, the burned site had significantly higher aboveground production than the unburned site. Significantly higher tissue levels of available K, Ca, and Mg were found on the unburned site than on the burned site; however, when nutrients were expressed in terms of nutrients in tissue per square metre, there were no significant differences between the burned and unburned sites. Spore counts for soil collected from the rhizosphere of little bluestem and randomly on burned and unburned sand prairies decreased from May into summer and then increased in late summer and fall on both sites during the first growing season postburn. Rhizosphere spore numbers were significantly lower on the burned site than on the unburned site in May and June, but they were significantly higher on the burned site in October during the first growing season. The results suggest that the response of VAM fungi to fire may be attributable to changes in the host plant and not due to any direct effect of fire.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 463A-463
Author(s):  
Rhoda Burrows ◽  
Francis Pfleger

Growing a plant host in association with other plant species (i.e., increasing diversity) changes the composition of the associated arbuscular–mycorrhizal (AM) fungal community. We tested whether this alteration in the fungal community causes significant differences in the growth of Schizachyrium scoparium L. (Little Bluestem, a C4 grass) or Lespedeza capitata L. (Bush clover, a legume). Seedlings were transplanted into pasteurized soil inoculated with soil from monoculture plots of Schizachyrium or Lespedeza, respectively, vs. plots containing one, seven, or 15 additional plant species. Soil washes from a composite of the plots were added to all pots, including non-inoculated controls, to reduce differences in the non-AM microbial communities. Spore counts of the inoculum from Lespedeza plots showed increasing numbers of AM fungal spores and species richness with increasing plant diversity; this was not true with the Schizachyrium plots, possibly because Schizachyrium may be a better host to more species of AM fungi than Lespedeza. Both Schizachyrium and Lespedeza responded to inoculation with increased growth compared to non-inoculated controls. Tissue analyses of both species showed that inoculation increased the percentage of Cu, and lowered the percentage of Mn compared to control plants. Schizachyrium showed no significant differences in growth due to inoculum source (1-, 2-, 8-, or 16-species plots); while Lespedeza showed increases in root and shoot weights with increasing source-plot diversity.



1984 ◽  
Vol 62 (11) ◽  
pp. 2272-2277 ◽  
Author(s):  
Laura A. Dickman ◽  
Anthony E. Liberta ◽  
Roger C. Anderson

The percentage of vesicular–arbuscular mycorrhizal (VAM) colonization of little bluestem (Schizachyrium scoparium) (Michx.) Nash.) and VAM spore populations in the rhizosphere of little bluestem from four prairie areas in Illinois were studied. At Goose Lake Prairie, a significant positive correlation (r = 0.77, p < 0.01) was found between soil moisture and density of VAM spores, but soil moisture and percent VAM colonization were not significantly correlated at any of its sites. Percentage of VAM colonization tended to be higher at study areas where little bluestem was a dominant species. However, spore numbers and abundance of little bluestem tended to be inversely related. Colonization decreased from May to July at all areas and this trend frequently continued into September. Month of sample collection had no significant effect on spore numbers except at Reavis Hill Prairie. The endophyte isolated at all areas was Glomus fasciculatum (Thaxter sensu Gerd.) Gerd. & Trappe. Other species, such as Gigaspora heterogama (Nicol. & Gerd.) Gerd. & Trappe and Acaulospora laevis Gerd. & Trappe, were more restricted in their distribution.



1988 ◽  
Vol 66 (4) ◽  
pp. 757-761 ◽  
Author(s):  
Lisa J. Cerligione ◽  
Anthony E. Liberta ◽  
Roger C. Anderson

Nonmycorrhizal little-bluestem plants grown in sterile soil and mycorrhizal plants grown in unsterilized soil were experimentally subjected to varied soil moisture conditions that ranged from saturation for 12 h followed by drainage for 48 h to allowing soil to dry to permanent wilting point and returning it to field capacity 72 h later. Nonmycorrhizal plants produced significantly (p < 0.05) greater root and shoot biomass, had lower root/shoot ratios, and produced more flowering culms than mycorrhizal plants. However, mycorrhizal plants had significantly higher tissue concentrations of phosphorus, calcium, zinc, iron, copper, aluminum, and sodium and lower concentrations of potassium amd manganese. There was a decrease in percent colonization as soil water availability decreased.



HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 450e-451
Author(s):  
Virginia A. Gaynor ◽  
Mary Hockenberry Meyer

There is great interest in prairie gardens and prairie restorations in the central United States. Small prairie gardens are often established with plugs, but most restorationists and landscape contractors use seed for large plantings. If initial establishment is poor, restorations are often interseeded the second or third season. However, to evaluate early establishment and determine if interseeding is necessary, contractors must be able to identify native grasses in the seedling and juvenile stages. In this study we investigated vegetative characteristics of native prairie grass seedlings. Seven species of native prairie grass were grown in the greenhouse: Andropogon gerardii (big bluestem), Sorghastrum nutans (Indian grass), Panicum virgatum (switch grass), Schizachyrium scoparium (little bluestem), Bouteloua curtipendula (sideoats grama), Elymus canadensis (Canada wildrye), and Bromus kalmii (Kalmís brome). Every 2 to 3 weeks after germination, seedlings were photographed, pressed, and mounted. Additional photographs were taken through the dissecting scope at key stages of development. Ligules and auricles were found to be useful in distinguishing species, and our close-up photographs highlight these structures. Hairiness and color were variable within a species and could not be used reliably in identification. A seedling identification key will be presented for the species studied.



Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 178
Author(s):  
Matej Vosnjak ◽  
Matevz Likar ◽  
Gregor Osterc

The influence of mycorrhizal inoculum in combination with different phosphorus treatments on growth and flowering parameters of Ajania (Ajania pacifica (Nakai) Bremer et Humphries) plants was investigated in two growing seasons (2015 and 2016). Plants of the cultivar ‘Silver and Gold’ were transplanted into pots either with added mycorrhizal inoculum or without inoculum and assigned to four phosphorus treatments. Mycorrhizal colonization was assessed by evaluating the frequency of colonization, intensity of colonization and density of fungal structures (arbuscules, vesicles, coils and microsclerotia) in the roots. During the growing season, the content of plant available phosphorus in the soil was analyzed, and shoot length, number of shoots, number of inflorescences, number of flowers and flowering time were evaluated. Inoculated Ajania plants were successfully colonized with arbuscular mycorrhizal fungi and dark septate endophytic fungi. In the root segments, hyphae were mainly observed, as well as vesicles, coils, arbuscules and microsclerotia, but in lower density. The density of fungal structures did not differ among phosphorus treatments, but did differ between years, with a higher density of fungal structures in 2016. Mycorrhizal plants developed higher number of shoots in 2016, higher number of inflorescences, higher number of flowers, and they flowered longer compared to uninoculated plants.



1995 ◽  
Vol 75 (1) ◽  
pp. 269-275 ◽  
Author(s):  
S. M. Boyetchko ◽  
J. P. Tewari

The relative susceptibility of selected barley cultivars produced in western Canada to vesicular-arbuscular mycorrhizal (VAM) fungi under field and greenhouse conditions was evaluated in this study. Cultivars tested under field conditions at the University of Alberta and Lacombe research stations showed no significant differences in VAM colonization of barley roots; colonization was light. Greenhouse trials at the University of Alberta with eight cultivars inoculated with individual mycorrhizal species illustrated significant differences among the barley cultivars in their reactions to Glomus dimorphicum, G. intraradices, and G. mosseae. Distinct differences were observed in the ability of each Glomus species to colonize the barley cultivars. The VAM fungi increased growth and yield in some cultivars, depending on the Glomus species. This study indicates that a degree of host-specificity exists in VAM fungi and that the host-mycorrhizal fungus genotypes may influence the effectiveness of the symbiosis. Key words: Barley, cultivars, susceptibility, VA mycorrhizal fungi



2020 ◽  
Vol 7 (2) ◽  
pp. 30-38
Author(s):  
Santhoshkumar S ◽  
Nagarajan N ◽  
Sree Priya S

In the present study to analyzed that the arbuscular mycorrhizal fungal spores in root colonization and spore population in rhizosphere soils samples in various medicinal at Paithal hills,Western Ghats of Kannur district, Kerala, India. Root and rhizosphere soil samples were collected during the month of August, 2018-March, 2019 from the surface to 30 cm depth as well as pH were also recorded. Totally 30 plant species belonging to 19 families were collected and identified. The present result showed arbuscular mycorrhizal spore population in the rhizosphere soil and root colonization of all the plant species. A total of 19 AM fungal spores were recovered from the rhizosphere soil samples in this study region. The Glomus was dominant had seen in rhizosphere soil samples in all the medicinal plant species. The maximum spore population was found in the rhizosphere soil samples of Mimosa pudica (590/100g of soil) which belongs to the family Mimosaceae and the lowest spore population was observed in the Terminalia bellirica 135/100g of soil) belongs to Combretaceae family. The highest  78 % AM fungal colonization was found in roots of Euphorbia hirta belongs to the family Euphorbiaceae. While the lowest 11 % AM fungal colonization was found in the root of Sida acuta belongs to the family Malvaceae.



2021 ◽  
Vol 12 ◽  
Author(s):  
Ricardo Alexander Peña Venegas ◽  
Soon-Jae Lee ◽  
Moses Thuita ◽  
Deusdedit Peter Mlay ◽  
Cargele Masso ◽  
...  

A vast majority of terrestrial plants are dependent on arbuscular mycorrhizal fungi (AMF) for their nutrient acquisition. AMF act as an extension of the root system helping phosphate uptake. In agriculture, harnessing the symbiosis can potentially increase plant growth. Application of the AMF Rhizophagus irregularis has been demonstrated to increase the yields of various crops. However, there is a paradigm that AMF colonization of roots, as well as the plant benefits afforded by inoculation with AMF, decreases with increasing phosphorus (P) supply in the soil. The paradigm suggests that when fertilized with sufficient P, inoculation of crops would not be beneficial. However, the majority of experiments demonstrating the paradigm were conducted in sterile conditions without a background AMF or soil microbial community. Interestingly, intraspecific variation in R. irregularis can greatly alter the yield of cassava even at a full application of the recommended P dose. Cassava is a globally important crop, feeding 800 million people worldwide, and a crop that is highly dependent on AMF for P uptake. In this study, field trials were conducted at three locations in Kenya and Tanzania using different AMF and cassava varieties under different P fertilization levels to test if the paradigm occurs in tropical field conditions. We found that AMF colonization and inoculation responsiveness of cassava does not always decrease with an increased P supply as expected by the paradigm. The obtained results demonstrate that maximizing the inoculation responsiveness of cassava is not necessarily only in conditions of low P availability, but that this is dependent on cassava and fungal genotypes. Thus, the modeling of plant symbiosis with AMF under different P levels in nature should be considered with caution.



2021 ◽  
Vol 22 (11) ◽  
Author(s):  
Maria Viva Rini ◽  
Fitri Yelli ◽  
Darwin Leonardo Tambunan ◽  
Inggar Damayanti

Abstract. Rini MV, Yelli F, Tambunan DL, Damayanti I. 2021. Morphological and molecular identifications of three native arbuscular mycorrhizal fungi isolated from the rhizosphere of Elaeis guineensis and Jatropha curcas in Indonesia. Biodiversitas 22: 4940-4947. Molecular analysis has been widely used to provide more accurate identification within arbuscular mycorrhizal fungi (AMF) species than identification based on morphology. However, morphological analysis is essential for a basic preliminary of classification studies. Therefore, a study is needed to complete the identification of AMF isolates through morphological and molecular analyses. This research used three AMF isolates, namely MV 5, MV 17, and MV 18, which were isolated from Indonesian agricultural land. Spore-based taxonomy (shape, size, color, ornamentation, PVLG, and Melzer’s reaction) and fungal colonization on roots of maize trap plants were employed for the morphological studies. AMF species identification was performed using molecular analysis through nested-Polymerase Chain Reaction (PCR) to amplify a fragment of SSU rRNA followed by sequencing and phylogenetic tree construction. Morphological analysis showed that MV 5 had spores borne from the neck of the sporiferous saccule, MV 17 was found to have a bulbous suspensor without a germination shield, and MV 18 had spores borne from subtending hyphae. The SSUR rRNA analysis revealed that MV 5, MV 15, and MV 18 were identified as Acaulospora longula, Gigaspora margarita, and Glomus etunicatum, respectively. Both morphological and molecular methods demonstrated reliable and consistent results that complement AMF taxonomy studies.



Sign in / Sign up

Export Citation Format

Share Document