Relationships between some North Atlantic and North Pacific species of Porphyra (Bangiales, Rhodophyta): evidence from isozymes, morphology, and chromosomes

1992 ◽  
Vol 70 (7) ◽  
pp. 1355-1363 ◽  
Author(s):  
Sandra C. Lindstrom ◽  
Kathleen M. Cole

Five pairs of putative sibling species of Porphyra are recognized between the boreal North Atlantic and North Pacific oceans on the basis of similarities in isozymes, morphology, and chromosomes. These pairs are North Atlantic P. amplissima and North Pacific P. miniata (recognized here as P. cuneiformis), North Atlantic P. "leucosticta" and North Pacific P. fucicola, North Atlantic P. "linearis" and North Pacific P. pseudolinearis, North Atlantic P. miniata and North Pacific P. variegata, and North Atlantic P. "purpurea" and North Pacific P. "purpurea." Species names in quotation marks are tentative, pending verification by further studies, since at least two species are currently recognized by each of these names. Evidence from isozymes and morphology is used to support separation of P. amplissima and P. cuneiformis from P. miniata, and reference is made to their type specimens. Key words: biogeography, chromosomes, isozymes, morphology, Porphyra, vicariance.

1964 ◽  
Vol 21 (3) ◽  
pp. 461-467
Author(s):  
H. J. Squires

The type specimens of Argis lar were collected in the north Pacific. They are no longer in existence. Specimens identified as A. lar by Rathbun, from the type locality and resembling the original specimens of Owen, are used to set up a neotype. This is done because some authors have assumed that specimens of Argis collected in the north Atlantic were A. lar and not A. dentata which they believed was not a valid species. Also the distribution of both species in northern Canadian waters is not yet clearly understood. Outstanding differences between the two species are discussed.


2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2009 ◽  
Vol 22 (12) ◽  
pp. 3177-3192 ◽  
Author(s):  
Terrence M. Joyce ◽  
Young-Oh Kwon ◽  
Lisan Yu

Abstract Coherent, large-scale shifts in the paths of the Gulf Stream (GS) and the Kuroshio Extension (KE) occur on interannual to decadal time scales. Attention has usually been drawn to causes for these shifts in the overlying atmosphere, with some built-in delay of up to a few years resulting from propagation of wind-forced variability within the ocean. However, these shifts in the latitudes of separated western boundary currents can cause substantial changes in SST, which may influence the synoptic atmospheric variability with little or no time delay. Various measures of wintertime atmospheric variability in the synoptic band (2–8 days) are examined using a relatively new dataset for air–sea exchange [Objectively Analyzed Air–Sea Fluxes (OAFlux)] and subsurface temperature indices of the Gulf Stream and Kuroshio path that are insulated from direct air–sea exchange, and therefore are preferable to SST. Significant changes are found in the atmospheric variability following changes in the paths of these currents, sometimes in a local fashion such as meridional shifts in measures of local storm tracks, and sometimes in nonlocal, broad regions coincident with and downstream of the oceanic forcing. Differences between the North Pacific (KE) and North Atlantic (GS) may be partly related to the more zonal orientation of the KE and the stronger SST signals of the GS, but could also be due to differences in mean storm-track characteristics over the North Pacific and North Atlantic.


2014 ◽  
Vol 29 (3) ◽  
pp. 505-516 ◽  
Author(s):  
Elizabeth A. Ritchie ◽  
Kimberly M. Wood ◽  
Oscar G. Rodríguez-Herrera ◽  
Miguel F. Piñeros ◽  
J. Scott Tyo

Abstract The deviation-angle variance technique (DAV-T), which was introduced in the North Atlantic basin for tropical cyclone (TC) intensity estimation, is adapted for use in the North Pacific Ocean using the “best-track center” application of the DAV. The adaptations include changes in preprocessing for different data sources [Geostationary Operational Environmental Satellite-East (GOES-E) in the Atlantic, stitched GOES-E–Geostationary Operational Environmental Satellite-West (GOES-W) in the eastern North Pacific, and the Multifunctional Transport Satellite (MTSAT) in the western North Pacific], and retraining the algorithm parameters for different basins. Over the 2007–11 period, DAV-T intensity estimation in the western North Pacific results in a root-mean-square intensity error (RMSE, as measured by the maximum sustained surface winds) of 14.3 kt (1 kt ≈ 0.51 m s−1) when compared to the Joint Typhoon Warning Center best track, utilizing all TCs to train and test the algorithm. The RMSE obtained when testing on an individual year and training with the remaining set lies between 12.9 and 15.1 kt. In the eastern North Pacific the DAV-T produces an RMSE of 13.4 kt utilizing all TCs in 2005–11 when compared with the National Hurricane Center best track. The RMSE for individual years lies between 9.4 and 16.9 kt. The complex environment in the western North Pacific led to an extension to the DAV-T that includes two different radii of computation, producing a parametric surface that relates TC axisymmetry to intensity. The overall RMSE is reduced by an average of 1.3 kt in the western North Pacific and 0.8 kt in the eastern North Pacific. These results for the North Pacific are comparable with previously reported results using the DAV for the North Atlantic basin.


2021 ◽  
Author(s):  
Julia Pfeffer ◽  
Anny Cazenave ◽  
Anne Barnoud

<p>The acquisition of time-lapse satellite gravity measurements during the GRACE and GRACE Follow On (FO) missions revolutionized our understanding of the Earth system, through the accurate quantification of the mass transport at global and regional scales. Largely related to the water cycle, along with some geophysical signals, decadal trends and seasonal cycles dominate the mass transport signals, constituting about 80 % of the total variability measured during GRACE (FO) missions. We focus here on the interannual variability, constituting the remaining 20 % of the signal, once linear trends and seasonal signals have been removed. Empirical orthogonal functions (EOFs) highlight the most prominent signals, including short-lived signals triggered by major earthquakes, interannual oscillations in the water cycle driven by the El Nino Southern Oscillation (ENSO) and significant decadal variability, potentially related to the Pacific Decadal Oscillation (PDO). The interpretation of such signals remains however limited due to the arbitrary nature of the statistical decomposition in eigen values. To overcome these limitations, we performed a LASSO (Least Absolute Shrinkage and Selection Operator) regression of eight climate indices, including ENSO, PDO, NPGO (North Pacific Gyre Oscillation), NAO (North Atlantic Oscillation), AO (Arctic Oscillation), AMO (Atlantic Multidecadal Oscillation), SAM (Southern Annular Mode) and IOD (Indian Ocean Dipole). The LASSO regularization, coupled with a cross-validation, proves to be remarkably successful in the automatic selection of relevant predictors of the climate variability for any geographical location in the world. As expected, ENSO and PDO impact the global water cycle both on land and in the ocean. The NPGO is also a major actor of the global climate, showing similarities with the PDO in the North Pacific. AO is generally favored over NAO, especially in the Mediteranean Sea and North Atlantic. SAM has a preponderant influence on the interannual variability of ocean bottom pressures in the Southern Ocean, and, in association with ENSO, modulates the interannual variability of ice mass loss in West Antarctica. AMO has a strong influence on the interannual water cycle along the Amazon river, due to the exchange of moisture in tropical regions. IOD has little to no impact on the interannual water cycle. All together, climate modes generate changes in the water mass distribution of about 100 mm for land, 50 mm for shallow seas and 15 mm for oceans. Climate modes account for a secondary but significant portion of the total interannual variability (at maximum 60% for shallow seas, 50 % for land and 40% for oceans). While such processes are insufficient to fully explain the complex nature of the interannual variability of water mass transport on a global scale, climate modes can be used to correct the GRACE (FO) measurements for a significant part of the natural climate variability and uncover smaller signals masked by such water mass transports.</p>


2017 ◽  
Vol 7 (9) ◽  
pp. 656-658 ◽  
Author(s):  
Shusaku Sugimoto ◽  
Kimio Hanawa ◽  
Tomowo Watanabe ◽  
Toshio Suga ◽  
Shang-Ping Xie

2017 ◽  
Author(s):  
Jorge Eiras-Barca ◽  
Alexandre M. Ramos ◽  
Joaquim G. Pinto ◽  
Ricardo M. Trigo ◽  
Margarida L. R. Liberato ◽  
...  

Abstract. The explosive cyclogenesis of extra-tropical cyclones and the occurrence of atmospheric rivers are characteristic features of baroclinic atmospheres, and are both closely related to extreme hydrometeorological events in the mid-latitudes, particularly on coastal areas on the western side of the continents. The potential role of atmospheric rivers in the explosive cyclone deepening has been previously analysed for selected case studies, but a general assessment from the climatological perspective is still missing. Using ERA-Interim reanalysis data for 1979–2011, we analyse the concurrence of atmospheric rivers and explosive cyclogenesis over the North Atlantic and North Pacific Basins for the extended winter months (ONDJFM). Atmospheric rivers are identified for almost 80 % of explosive deepening cyclones. For non-explosive cyclones, atmospheric rivers are found only in roughly 40 % of the cases. The analysis of the time evolution of the high values of water vapour flux associated with the atmospheric river during the cyclone development phase leads us to hypothesize that the identified relationship is the fingerprint of a mechanism that raises the odds of an explosive cyclogenesis occurrence and not merely a statistical relationship. This insight can be helpful for the predictability of high impact weather associated with explosive cyclones and atmospheric rivers.


2017 ◽  
Vol 145 (11) ◽  
pp. 4317-4344 ◽  
Author(s):  
Clark Evans ◽  
Kimberly M. Wood ◽  
Sim D. Aberson ◽  
Heather M. Archambault ◽  
Shawn M. Milrad ◽  
...  

Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from the meso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as North Atlantic Hurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review in 2003. Methods for diagnosing ET in reanalysis, observational, and model-forecast datasets are discussed. New climatologies for the eastern North Pacific and southwest Indian Oceans are presented alongside updates to western North Pacific and North Atlantic Ocean climatologies. Advances in understanding and, in some cases, modeling the direct impacts of ET-related wind, waves, and precipitation are noted. Improved understanding of structural evolution throughout the transformation stage of ET fostered in large part by novel aircraft observations collected in several recent ET events is highlighted. Predictive skill for operational and numerical model ET-related forecasts is discussed along with environmental factors influencing posttransition cyclone structure and evolution. Operational ET forecast and analysis practices and challenges are detailed. In particular, some challenges of effective hazard communication for the evolving threats posed by a tropical cyclone during and after transition are introduced. This review concludes with recommendations for future work to further improve understanding, forecasts, and hazard communication.


2021 ◽  
Vol 118 (38) ◽  
pp. e2111205118
Author(s):  
Chun-Mao Tseng ◽  
Shin-Jing Ang ◽  
Yi-Sheng Chen ◽  
Jen-Chieh Shiao ◽  
Carl H. Lamborg ◽  
...  

Bluefin tuna (BFT), highly prized among consumers, accumulate high levels of mercury (Hg) as neurotoxic methylmercury (MeHg). However, how Hg bioaccumulation varies among globally distributed BFT populations is not understood. Here, we show mercury accumulation rates (MARs) in BFT are highest in the Mediterranean Sea and decrease as North Pacific Ocean > Indian Ocean > North Atlantic Ocean. Moreover, MARs increase in proportion to the concentrations of MeHg in regional seawater and zooplankton, linking MeHg accumulation in BFT to MeHg bioavailability at the base of each subbasin's food web. Observed global patterns correspond to levels of Hg in each ocean subbasin; the Mediterranean, North Pacific, and Indian Oceans are subject to geogenic enrichment and anthropogenic contamination, while the North Atlantic Ocean is less so. MAR in BFT as a global pollution index reflects natural and human sources and global thermohaline circulation.


Sign in / Sign up

Export Citation Format

Share Document