Discussion of “Numerical assessment of equivalent diameter equations for prefabricated vertical drains”

2013 ◽  
Vol 50 (7) ◽  
pp. 801-804
Author(s):  
Hui Wu ◽  
Liming Hu

The Discussion revises the figure that compares different equivalent-diameter equations for prefabricated vertical drains, and the result of another equivalent equation that has been widely used in practice is also added into the figure. In addition, a three-dimensional (3D) numerical model is developed to compare with the two-dimensional (2D) numerical model used in the paper. The result indicates that the difference between the 3D and 2D models can be about 5%.

2012 ◽  
Vol 49 (12) ◽  
pp. 1427-1433 ◽  
Author(s):  
Hossam M. Abuel-Naga ◽  
Abdelmalek Bouazza ◽  
Dennes T. Bergado

2021 ◽  
Vol 9 (8) ◽  
pp. 797
Author(s):  
Shu Lin ◽  
Dengfeng Fu ◽  
Zefeng Zhou ◽  
Yue Yan ◽  
Shuwang Yan

Vacuum preloading combined with prefabricated vertical drains (PVDs) has the potential to improve the soft sediments under water, however, its development is partly limited by the unclear understanding of the mechanism. This paper aims to extend the comprehension of the influential mechanism of overlapping water in the scenario of underwater vacuum preloading with PVDs. The systematic investigations were conducted by small strain finite element drained analyses, with the separated analysis schemes considering suction-induced consolidation, seepage and their combination. The development of settlement in the improved soil region and the evolution of seepage flow from the overlapping water through the non-improved soil region into improved zone are examined in terms of the build-up of excess pore pressure. Based on the results of numerical analyses, a theoretical approach was set out. It was capable to estimate the time-dependent non-uniform settlement along the improved soil surface in response to the combined effects of suction-induced consolidation and seepage. The difference of underwater and onshore vacuum preloading with PVDs is discussed with some practical implication and suggestion provided.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1819
Author(s):  
Borys Basok ◽  
Borys Davydenko ◽  
Anatoliy M. Pavlenko

The article presents the modeling of the dynamics of the vapor-gas mixture and heat and mass transfer (sorption-desorption) in the capillary structure of the porous medium. This approach is underpinned by the fact that the porous structure is represented by a system of linear microchannels oriented along the axes of a three-dimensional coordinate system. The equivalent diameter of these channels corresponds to the average pore diameter, and the ratio of the total pore volume to the volume of the entire porous material corresponds to its porosity. The entire channel area is modeled by a set of cubic elements with a certain humidity, moisture content, pressure and temperature. A simulation is carried out taking into account the difference in temperatures of each of the phases: solid, liquid and gas.


2012 ◽  
Vol 1 (33) ◽  
pp. 8 ◽  
Author(s):  
Xiping Dou ◽  
Xinzhou Zhang ◽  
Xiangming Wang ◽  
Jinhua Wang

In order to resist tides and salt intrusion, there have been more than 300 tidal gates built at many river estuaries in China since 1960s. However, the serious deposition occurred at a lot of gates due to the changes of hydrodynamic and sediment conditions and lack of discharge from the rivers. At present, the research is mainly to analyze the reasons for siltation downstream gates and the measures of dredging. It is not enough for study on distribution simulation of deposition downstream sluice. Studies have shown that 2D numerical model cannot reflect the distribution of sediment siltation downstream gates. Therefore, it needs to develop 3D sediment numerical model for deposition prediction. In this paper, combined the feasibility study of a tidal gate at Mulanxi River, a physical model and 3D numerical model of sediment siltation downstream gate are conducted.


2021 ◽  
Vol 4 (2) ◽  
pp. 417
Author(s):  
Erika Oktavia ◽  
Andryan Suhendra

Over time, there has been more development, this has made less land for development. However, development still has to go on. One of the infrastructure that is currently needed is toll roads to increase the efficiency of movement from one place to another. One of the serious problems at this time is that many soils have small bearing capacity and large settlement, for example, such as soft soil. In order for this model soil to have a stable condition, the solution is loaded so that the pore water from the soil can be pressed out. However, it takes a long time to achieve the desired settlement, here the prefabricated vertical drain method is used to accelerate the settlement. Prefabricated vertical drain here makes the distance between the pore water that was previously thick as soft soil, to half the distance between prefabricated vertical drains. The analysis calculation in this thesis uses the one dimensional consolidation method, the finite element method, and the asaoka method as the calculation of the actual results from field data. The results of this study found that the difference in the degree of consolidation between the theoretical calculations and the Asaoka method was 3.4303%.


2021 ◽  
Vol 13 (3) ◽  
pp. 10-22
Author(s):  
Ahmed M. Abouhashem ◽  
Alaa El-Din A. El-Gendy ◽  
Mohamed H. Rabie ◽  
Mohamed A. Mostafa

A large-scale trial embankment provided with partially penetrating prefabricated vertical drains (PVD) was installed in consolidating marine clay deposits at East-Port said industrial zone project in Egypt. The trial embankment was constructed with a bottom area of 150x150m and a height of 5.5m to evaluate the efficiency of the improvement system and verify the design parameters. An intensive instrumentation system was built-up including shallow settlement indicators, vibrating wire piezometers, extensometer, and inclinometers. Two and three-dimensional finite element analyses (FE) were performed to study the effect of the preloading system provided with partially PVD in consolidating marine clay deposits. FE models were validated and showed good agreement with the field observations in terms of vertical displacement of embankment center, and lateral soil deformation beneath the embankment toe.


Sign in / Sign up

Export Citation Format

Share Document