Experimental study on dual capillary barrier using recycled asphalt pavement materials

2014 ◽  
Vol 51 (10) ◽  
pp. 1165-1177 ◽  
Author(s):  
F.R. Harnas ◽  
H. Rahardjo ◽  
E.C. Leong ◽  
J.Y. Wang

The performance of a capillary barrier cover as a cover system is affected by the ability of the capillary barrier to store water. To increase the water storage of a capillary barrier cover, the dual capillary barrier (DCB) concept is proposed. The objective of this paper is to investigate the water storage of the proposed DCB as compared to the storage of a traditional single capillary barrier (SCB). The investigation is conducted using two one-dimensional infiltration column tests under different rainfall conditions. The results show that a DCB stores more water as compared to SCB. The results show that the fine-grained layers of a DCB have higher volumetric water contents during drainage as compared to that of the fine-grained layer of an SCB. The higher volumetric water content is caused by the fact that the thickness of the layers in a DCB corresponds to a pore-water pressure head range where the material has the highest volumetric water content. In addition, a slower drainage rate is resulted from additional layering in a DCB.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Joon-Young Park ◽  
Young-Suk Song

A combined analysis involving a laboratory test and numerical modeling was performed to investigate the hydraulic processes leading to slope failure during rainfall. Through a laboratory landslide test in which artificial rainfall was applied to a homogeneous sandy slope, the timing and configurations of multiple slides were identified. In addition, volumetric water content was measured in real time through the use of monitoring sensors. The measured volumetric water content data were then used to validate the relevance of the numerical modeling results. The validated numerical modeling of the laboratory-scale slope failures provided insight into the hydraulic conditions that trigger landslides. According to the numerical modeling results, the miniaturized slope in the laboratory test was saturated in a manner so that the wetting front initially progresses downward and then the accumulated rainwater at the toe of the slope creates a water table that advances toward the crest. Furthermore, each of the five sequential failures that occurred during this experiment created slip surfaces where the pore-water pressure had achieved full saturation and an excessive pore-water pressure state. The findings of this study are expected to help understand the hydraulic prerequisites of landslide phenomena.


2019 ◽  
Vol 56 (12) ◽  
pp. 1863-1875 ◽  
Author(s):  
Charles W.W. Ng ◽  
R. Chen ◽  
J.L. Coo ◽  
J. Liu ◽  
J.J. Ni ◽  
...  

To promote environmental protection and sustainability, the use of plants and recycled wastes in geotechnical construction such as landfill covers is recommended. A landfill cover field test was conducted at the Shenzhen Xiaping landfill site, located in a humid climatic region of China. The main objective was to validate the field performance of a novel vegetated three-layer landfill cover system using recycled construction waste without the need of geomembrane. Unsieved completely decomposed granite and coarsely crushed concrete was used for the top and intermediate layers while sieved completely decomposed granite was used as the lowest layer. One section was transplanted with Bermuda grass while the other section was left bare. To assess the landfill cover performance, pore-water pressure, volumetric water content, percolation, and atmospheric parameters were measured for a period of 13 months under natural climatic conditions. The cumulative rainfall depth was about 2950 mm over the entire monitoring period. During rainfall, the presence of grass led to lower pore-water pressure (or higher suction) and volumetric water content in the three-layer landfill cover system. At the end of monitoring, the cumulative percolation was about 27 and 20 mm for the bare and grass-covered landfill covers, respectively. It is evident that the vegetated three-layer landfill cover system using recycled concrete without geomembrane can be effective in minimizing percolation in humid climates.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kaisheng Chen

By embedding water content sensors and pore water pressure sensors inside the red clay slope on-site in Guiyang, Guizhou, shear tests were performed on soil samples at different depths of the slope under different weather. The changes of water content, pore water pressure, and shear strength index of the slope inside the slope under the influence of the atmosphere were tracked and tested, and the failure characteristics and evolution of the red clay slope were analyzed. It is believed that the depth of influence of the atmosphere on red clay slopes is about 0.7 m, rainfall is the most direct climatic factor leading to the instability of red clay slopes, and the evaporation effect is an important prerequisite for the catastrophe of red clay slopes. The cohesion and internal friction angle of the slope soil have a good binary quadratic function relationship with the water content and density. The water content and density can be used to calculate the cohesion and internal friction angle. Failure characteristics of red clay slopes: the overall instability failure is less, mainly surface failure represented by gullies and weathering and spalling, and then gradually evolved into shallow instability failure represented by collapse and slump. The damage evolution law is as follows: splash corrosion and surface corrosion stage⟶ fracture development stage⟶ gully formation stage⟶ gully development through stage⟶ local collapse stage⟶ slope foot collapse stage.


2020 ◽  
Vol 857 ◽  
pp. 383-393
Author(s):  
Mahdi O. Karkush ◽  
Amer G. Jihad

This study focuses on investigating the impacts of kerosene on the physical, mechanical, and chemical characteristics of clay soil. The soils specimens are contaminated artificially with six ratios of kerosene (5, 10, 20, 30, 40, and 50) % calculated according to the dry weight of soil. The artificial contamination includes air drying of the disturbed soil, then placed in plastic containers and mixed with the field water content and the specified concentration of kerosene to ensure getting homogenous contaminated soil specimens. The contaminated soil specimens left for 30 days in plastic containers covered by nylon sheets to control the water content and prevent volatility of contaminant. The results of tests proved that different ratios of kerosene have different impacts on the engineering and chemical characteristics of soil specimens. The specific gravity, percentages of fine particles, optimum water content, the initial and final void ratio, coefficient of consolidation, swelling index, permeability, the undrained shear strength, effective shear strength parameters, and the rate of reduction of initial pore water pressure are reduced significantly with increasing the content of kerosene in soil. Generally, the concentration of kerosene less than 10% has slight impacts on the studied characteristics of soil specimens.


2020 ◽  
Vol 15 (12) ◽  
pp. 3571-3591
Author(s):  
Bartłomiej Szczepan Olek

AbstractConsolidation rate has significant influence on the settlement of structures founded on soft fine-grained soil. This paper presents the results of a series of small-scale and large-scale Rowe cell consolidation tests with pore water pressure measurements to investigate the factors affecting the consolidation process. Permeability and creep/resistance structure factors were considered as the governing factors. Intact and reconstituted marine clay from the Polish Carpathian Foredeep basin as well as clay–sand mixtures was examined in the present study. The fundamental relationship correlating consolidation degrees based on compression and pore water pressure was assessed to indicate the nonlinear soil behaviour. It was observed that the instantaneous consolidation parameters vary as the process progresses. The instantaneous coefficient of consolidation first drastically increases or decreases with increase in the degree of consolidation and stabilises in the middle stage of the consolidation; it then decreases significantly due to viscoplastic effects occurring in the soil structure. Based on the characteristics of the relationship between coefficient of consolidation and degree of dissipation at the base, the consolidation range that complies with theoretical assumptions was established. Furthermore, the influence of coarser fraction in clay–sand mixtures in controlling the consolidation rates is discussed.


2002 ◽  
Vol 39 (6) ◽  
pp. 1341-1357 ◽  
Author(s):  
Jean-Marie Fleureau ◽  
Jean-Claude Verbrugge ◽  
Pedro J Huergo ◽  
António Gomes Correia ◽  
Siba Kheirbek-Saoud

A relatively large number of drying and wetting tests have been performed on clayey soils compacted at the standard or modified Proctor optimum water content and maximum density and compared with tests on normally consolidated or overconsolidated soils. The results show that drying and wetting paths on compacted soils are fairly linear and reversible in the void ratio or water content versus negative pore-water pressure planes. On the wet side of the optimum, the wetting paths are independent of the compaction water content and can be approached by compaction tests with measurement of the negative pore-water pressure. Correlations have been established between the liquid limit of the soils and such properties as the optimum water content and negative pore-water pressure, the maximum dry density, and the swelling or drying index. Although based on a limited number of tests, these correlations provide a fairly good basis to model the drying–wetting paths when all the necessary data are not available.Key words: compaction, unsaturated soils, clays, drying, wetting, Proctor conditions.


1995 ◽  
Vol 32 (5) ◽  
pp. 749-766 ◽  
Author(s):  
Harianto Rahardjo ◽  
Delwyn G. Fredlund

An experimental program was designed to study the behavior of unsaturated soils during undrained loading and consolidation. A Ko cylinder was designed and built for the testing program. Simultaneous measurements of pore-air and pore-water pressures could be made throughout a soil specimen using this Ko cylinder. Four types of tests were performed on a silty sand. These are (1) undrained loading tests where both the air and water are not allowed to drain, (2) constant water content tests where only the water phase is not allowed to drain, (3) consolidation tests where both the air and water phases are allowed to drain, and (4) increasing matric suction tests. Undrained loading tests or constant water content loading tests were conducted for measuring the pore pressure parameters for the unsaturated soil. Drained tests consisting of either consolidation tests or increasing matric suction tests were conducted to study the pore pressure distribution and volume change behavior throughout an unsaturated soil during a transient process. The experimental pore pressure parameters obtained from the undrained loadings and constant water content leadings agreed reasonably well with theory. The pore-air pressure was found to dissipate instantaneously when the air phase is continuous. The pore-water pressure dissipation during the consolidation test was found to be faster than the pore-water pressure decrease during the increasing matric suction test. The differing rates of dissipation were attributed to the different coefficients of water volume change for each of the tests. The water volume changes during the consolidation test were considerably smaller than the water volume changes during the increasing matric suction tests for the same increment of pressure change. Key words : consolidation, Ko loading, matric suction, pore-air pressures, pore-water pressures, unsaturated soils


2007 ◽  
Vol 44 (10) ◽  
pp. 1148-1156 ◽  
Author(s):  
Matthew Helinski ◽  
Andy Fourie ◽  
Martin Fahey ◽  
Mostafa Ismail

During the placement of fine-grained cemented mine backfill, the high placement rates and low permeability often result in undrained self-weight loading conditions, when assessed in the conventional manner. However, hydration of the cement in the backfill results in a net volume reduction—the volume of the hydrated cement is less than the combined volume of the cement and water prior to hydration. Though the volume change is small, it occurs in conjunction with the increasing stiffness of the cementing soil matrix, and the result in certain circumstances can be a significant reduction in pore-water pressure as hydration proceeds. In this paper, the implications of this phenomenon in the area of cemented mine backfill are explored. An analytical model is developed to quantify this behaviour under undrained boundary conditions. This model illustrates that the pore-water pressure change is dependent on the amount of volume change associated with the cement hydration, the incremental stiffness change of the soil, and the porosity of the material. Experimental techniques for estimating key characteristics associated with this mechanism are presented. Testing undertaken on two different cement–minefill combinations indicated that the rate of hydration and volumes of water consumed during hydration were unique for each cement–tailings combination, regardless of mix proportions.


1973 ◽  
Vol 13 (01) ◽  
pp. 12-22 ◽  
Author(s):  
J.E. Smith

American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc. This paper was prepared for the 46th Annual Fall Meeting of the Society of Petroleum Engineers of AIME, to be held in New Orleans, La., Oct. 3-6, 1971. Permission to copy is restricted to an abstract of not more than 300 words. Illustrations may not be copied. The abstract should contain conspicuous acknowledgment of where and by whom the paper is presented. Publication elsewhere after publication in the JOURNAL OF PETROLEUM TECHNOLOGY or the SOCIETY OF PETROLEUM ENGINEERS JOURNAL is usually granted upon request to the Editor of the appropriate journal provided agreement to give proper credit is made. Discussion of this paper is invited. Three copies of any discussion should be sent to the Society of Petroleum Engineers office. Such discussion may be presented at the above meeting and, with the paper, may be considered for publication in one of the two SPE magazines. Abstract The compaction of shales or other fine-grained compressible rocks is described by a mathematical model, and specific solutions are presented graphically. The model treats the presented graphically. The model treats the upward and downward movements of the water the solid matrix in very extensive, uniform, flat-lying units. It may readily be adapted treat the compaction of sands. The principal elements of the model are:(1)continuity equations for the water and solid matrix;(2)Darcy's law;(3)an expression for the fluid potential;(4)an equation for the total potential;(4)an equation for the total vertical stress;(5)an empirical relationship between porosity and the difference between the total vertical stress and the fluid pressure; and(6)an empirical relationship between permeability and porosity. From these elements an expression is derived for the porosity within the unit in terms of the space and time coordinates and boundary conditions, for the approximation that the densities of the water and the solid matrix are constant. Numerical solutions for the fluid pressure, the total vertical stress, the pressure, the total vertical stress, the porosity, the permeability, and the velocities porosity, the permeability, and the velocities of water and solid matrix were obtained as profiles through the unit at close time intervals, profiles through the unit at close time intervals, and representative results are displayed. The events followed are:shale sedimentation;a time lapse following shale sedimentation;sedimentation of a normally pressured unit over the shale unit; anda final time lapse with no sedimentation. Two boundary conditions for the base of the shale unit are considered:the underlying unit is impermeable, andthe underlying unit is a normally pressured sand. In the latter case, water flows both upward and downward out of the compacting unit. The solutions show that pore water pressures much greater than normal are obtained and may persist for tens or hundreds of millions of years. It is also found that a shale unit rapidly buried beneath a thick normally pressured sand develops a zone near the sand-shale boundary of reduced porosity and permeability in which the pore water pressure permeability in which the pore water pressure gradient is very large. Introduction The presence of low density overpressured shales or mudstones in a sedimentary sequence influences the operations of petroleum exploration, drilling and production. During the exploration phase such low density fine-grained rocks influence the interpretation of seismic and gravity surveys. During the drilling of prospects, the mud casing and log programs and prospects, the mud casing and log programs and safety are affected by high pressures. During production, the possible influx of shale water production, the possible influx of shale water requires investigation.


Sign in / Sign up

Export Citation Format

Share Document