Installation of dynamically embedded plate anchors as assessed through field tests

2015 ◽  
Vol 52 (9) ◽  
pp. 1270-1282 ◽  
Author(s):  
A.P. Blake ◽  
C.D. O’Loughlin

A dynamically embedded plate anchor (DEPLA) is a rocket-shaped anchor that comprises a removable central shaft and a set of four flukes. The DEPLA penetrates to a target depth in the seabed by the kinetic energy obtained through free-fall in water. After embedment the central shaft is retrieved leaving the anchor flukes vertically embedded in the seabed. The flukes constitute the load-bearing element as a plate anchor. This paper focuses on the dynamic installation of the DEPLA. Net resistance and velocity profiles are derived from acceleration data measured by an inertial measurement unit during DEPLA field tests, which are compared with corresponding theoretical profiles based on strain rate–enhanced shear resistance and fluid mechanics drag resistance. Comparison of the measured net resistance force profiles with the model predictions shows fair agreement at 1:12 scale and good agreement at 1:7.2 and 1:4.5 scales. For all scales the embedment model predicts the final anchor embedment depth to a high degree of accuracy.

2015 ◽  
Vol 52 (1) ◽  
pp. 87-95 ◽  
Author(s):  
A.P. Blake ◽  
C.D. O’Loughlin ◽  
C. Gaudin

A dynamically embedded plate anchor (DEPLA) is a rocket-shaped anchor that penetrates to a target depth in the seabed by the kinetic energy obtained through free-fall and by the anchor’s self-weight. After embedment, the central shaft is retrieved leaving the anchor flukes vertically embedded in the seabed. The flukes constitute the load bearing element as a plate anchor. This paper presents and considers field data on the embedment depth loss due to the plate anchor keying process and the subsequent bearing capacity factor of the plate anchor element. The loss in plate anchor embedment was significantly higher than that reported from corresponding centrifuge tests and is reflected in the larger padeye displacements required to mobilize peak capacity in the field tests. Measured plate capacities and plate rotations during keying indicate that the end of keying coincides with the peak anchor capacity. Experimental bearing capacity factors are in the range Nc = 14.3–14.6, which is appreciably higher than existing solutions for vanishingly thin circular plates. The higher Nc for the DEPLA is considered to be due to a combination of the cruciform fluke arrangement and the fluke (or plate) thickness.


Author(s):  
Jairo Bastos de Araujo ◽  
Roge´rio Diniz Machado ◽  
Cipriano Jose de Medeiros Junior

Petrobras developed a new kind of anchoring device known as Torpedo. This is a steel pile of appropriate weight and shape that is launched in a free fall procedure to be used as fixed anchoring point by any type of floating unit. There are two Torpedoes, T-43 and T-98 weighing 43 and 98 metric tons respectively. On October 2002 T-43 was tested offshore Brazil in Campos Basin. The successful results approved and certified by Bureau Veritas, and the need for a feasible anchoring system for new Petrobras Units in deep water fields of Campos Basin led to the development of a Torpedo with High Holding Power. Petrobras FPSO P-50, a VLCC that is being converted with a spread-mooring configuration will be installed in Albacora Leste field in the second semester of 2004. Its mooring analysis showed that the required holding power for the mooring system would be very high. Drag embedment anchors option would require four big Anchor Handling Vessels for anchor tensioning operations at 1400 m water depth. For this purpose T-98 was designed and its field tests were completed in April 2003. This paper discusses T-98 design, building, tests and ABS certification for FPSO P-50.


1989 ◽  
Vol 26 (4) ◽  
pp. 640-652 ◽  
Author(s):  
F. Poorooshasb ◽  
R. G. James

A set of experiments, conducted on the Cambridge geotechnical centrifuge and which model the free-fall option for the subseabed disposal of heat-generating waste, is reported. The results reported relate to the morphological effects of model penetration (depth of penetration, deformation patterns, and closure) as well as to the pore pressure changes associated with this penetration. Results regarding the effect of heat emission (from the model penetrators) upon the surrounding soil are also presented. These results are discussed and compared with theoretical analyses and field tests, and conclusions are presented regarding both the processes attendant upon penetration and heating and the relevance of the modelling to the prototype event. Key words: centrifuge modelling, heat-generating waste disposal, projectile penetration.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2241 ◽  
Author(s):  
Chengbin Chen ◽  
YaoYuan Tian ◽  
Liang Lin ◽  
SiFan Chen ◽  
HanWen Li ◽  
...  

GNSS information is vulnerable to external interference and causes failure when unmanned aerial vehicles (UAVs) are in a fully autonomous flight in complex environments such as high-rise parks and dense forests. This paper presents a pan-tilt-based visual servoing (PBVS) method for obtaining world coordinate information. The system is equipped with an inertial measurement unit (IMU), an air pressure sensor, a magnetometer, and a pan-tilt-zoom (PTZ) camera. In this paper, we explain the physical model and the application method of the PBVS system, which can be briefly summarized as follows. We track the operation target with a UAV carrying a camera and output the information about the UAV’s position and the angle between the PTZ and the anchor point. In this way, we can obtain the current absolute position information of the UAV with its absolute altitude collected by the height sensing unit and absolute geographic coordinate information and altitude information of the tracked target. We set up an actual UAV experimental environment. To meet the calculation requirements, some sensor data will be sent to the cloud through the network. Through the field tests, it can be concluded that the systematic deviation of the overall solution is less than the error of GNSS sensor equipment, and it can provide navigation coordinate information for the UAV in complex environments. Compared with traditional visual navigation systems, our scheme has the advantage of obtaining absolute, continuous, accurate, and efficient navigation information at a short distance (within 15 m from the target). This system can be used in scenarios that require autonomous cruise, such as self-powered inspections of UAVs, patrols in parks, etc.


Diagnostics ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 342 ◽  
Author(s):  
Sebastian Glowinski ◽  
Karol Łosiński ◽  
Przemysław Kowiański ◽  
Monika Waśkow ◽  
Aleksandra Bryndal ◽  
...  

Background: the goal of the study is to ascertain the influence of discopathy in the lumbosacral (L-S) segment on the gait parameters. The inertial sensors are used to determine the pathologic parameters of gait. Methods: the study involved four patients (44, 46, 42, and 38 years). First, the goal of the survey was to analyze by a noninvasive medical test magnetic resonance imaging (MRI) of each patient. Next, by using inertial sensors, the flexion-extension of joint angles of the left and right knees were calculated. The statistical analysis was performed. The wavelet transform was applied to analyze periodic information in the acceleration data. Results: in the patients with discopathy, the amount of knee flexion attained during stance phase is significantly lower than that of normal (health side), which could indicate poor eccentric control or a pain avoidance mechanism. The biggest differences are observed in the Initial Swing phase. Bending of the lower limb in the knee joint at this stage reaches maximum values during the entire gait cycle. Conclusions: It has been difficult to quantify the knee angle during gait by visual inspection. The inertial measurement unit (IMU) system can be useful in determining the level of spine damage and its degree. In patients in the first stages of the intervertebral disc disease who may undergo conservative treatment, it may also partially delay or completely exclude the decision to perform a complicated imaging examination which is MRI, often showing a false positive result in this phase of the disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yangchun Han ◽  
Jiulong Cheng ◽  
Weifeng Zheng ◽  
Shijun Ding

In order to evaluate the uplift bearing capacity of belled piers beside slopes, a series of numerical simulations are carried out based on field tests data. First, a number of uplift loading tests of full-scale belled piers are carried out on the project site of transmission line in Anhui Province, China. Second, a slope-foundation model for numerical modeling is proposed and calibrated based on field tests data. The behavior of belled piers adjacent to slopes subject to uplift load is studied by numerical modeling. The impact of three parameters, including distance (a) from the belled pier to the crest of the slope, slope angle (β), and embedment depth (h) of the belled pier, has been investigated on the uplift capacity of the belled pier. Based on the simulation results, an attenuation coefficient (ω) is put forward for evaluating the reduction of uplift bearing capacity of the belled pier. The results show that the coefficient ω is negatively correlated with distance a and depth h, and the influence of distance a is greater than that of depth h according to the results of variance analysis, but the difference is not significant by F test. Moreover, the empirical equation between attenuation coefficient ω and three key factors a, β, and h had been presented by a series of fitting.


2000 ◽  
Vol 37 (2) ◽  
pp. 414-437 ◽  
Author(s):  
Asim Haldar ◽  
VSN Prasad Yenumula ◽  
T R Chari

The results of eight full-scale tests on directly embedded steel pole foundations are presented. Fully instrumented poles were tested to measure the various design parameters. Different types of backfills such as sand, in situ gravelly sand, crushed stone, and flowable material were used. Various parameters were measured, including applied moment, ground line deflection-rotation, rotation of the pole below the ground level, soil pressures, and bending moments in the poles. The behaviour of these foundations was explained through ultimate capacity and moment-rotation characteristics. Based on these test results, it was found that the capacity of the directly embedded pole foundation depends primarily on the compaction levels of backfill and the embedment length of the pole. Flowable backfill material, which does not require any compaction, was found to be most effective and promising. Even when the backfill was loose, the lateral capacity significantly increased by the addition of a baseplate or by installing the pole with an additional embedment depth. Various theories developed for laterally loaded rigid piles were used to predict the moment-rotation behaviour and the ultimate capacity of the directly embedded pole foundation with different types of backfill material. Results from the analytical investigations were compared with those obtained from the full-scale load tests. Comparisons show that the ultimate capacities predicted by the models ranged from 0.30 to 2.20 times the measured capacities.Key words: backfill, compaction, full-scale tests, laterally loaded rigid piles, transmission steel poles, ultimate moment.


2011 ◽  
Vol 57 (No. 4) ◽  
pp. 128-136 ◽  
Author(s):  
M. Askari ◽  
M.H. Komarizade ◽  
A.M. Nikbakht ◽  
N. Nobakht ◽  
R.F. Teimourlou

An adjustable three-point hitch dynamometer with a draft capacity of 50 kN was developed to measure forces on the tractor and mounted implements. The design concept of the dynamometer was based on two linkage frames mounted between tractor links and the implement. The force sensing elements were comprised of a loadcell that was installed between the frames. The system provides variable width and height of the dynamometer links to satisfy a wide range of implement dimensions. All mounted tillage implements at categories II and III such as plows, cultivators and harrows were able to be tested by this dynamometer excluding mounted implements powered by power take-off (PTO). The dynamometer was calibrated and several field tests were conducted to measure the force required to pull a moldboard plow in a clay loam soil. The calibration showed a high degree of linearity between the draft requirements and the dynamometer outputs. Field tests showed that it was able to function effectively as intended without any mechanical problems.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Tugen Feng ◽  
Jingyao Zong ◽  
Wei Jiang ◽  
Jian Zhang ◽  
Jian Song

Three-dimensional nonlinear numerical analysis is carried out to determine the ultimate pullout capacity of a square plate anchor in layered clay using the large finite element analysis software ABAQUS. An empirical formula for the pullout bearing capacity coefficient of a plate anchor in layered soils is proposed based on the bearing characteristics of plate anchors in single-layer soils. The results show that a circular flow (circulation field) is induced around the plate anchor during the uplift process and that the flow velocity and circulation field range are mainly affected by the properties of the soil around the plate anchor. The bearing characteristics of plate anchors in layered soils are influenced by factors such as the embedment depth of the plate anchor, the friction coefficient between the soil and the plate anchor, the thickness of the upper soil layer, and the thickness of the middle soil layer. The rationality of the finite element numerical calculation results and the empirical formula is verified by comparing the results from this study with results previously reported in the literature.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 980
Author(s):  
Yuhong Zhao ◽  
Cunfa Cao ◽  
Zhansheng Liu ◽  
Enyi Mu

Prefabricated buildings are widely used because of their green environmental protection and high degree of industrialization. However, in construction process, there are some defects such as small wireless network coverage, high-energy consumption, inaccurate control, and backward blind hoisting methods in the hoisting process of prefabricated components (PC). Internet-of-Things (IoT) technology can be used to collect and transmit data to strengthen the management of construction sites. The purpose of this study was to establish an intelligent control method in the construction and hoisting process of PC by using IoT technology. Long Range Radio (LoRa) technology was used to conduct data terminal acquisition and wireless transmission in the construction site. The Inertial Measurement Unit (IMU), Global Positioning System (GPS), and other multi-sensor fusion was used to collect information during the hoisting process of PC, and multi-sensor information was fused by fusion location algorithm for location control. Finally, the feasibility of this method was verified by a project as a case. The results showed that the IoT technology can strengthen the management ability of PC in the hoisting process, and improve the visualization level of the hoisting process of PC. Analysis of the existing outdated PC hoisting management methods, LoRa, IMU, GPS and other sensors were used for data acquisition and transmission, the PC hoisting multi-level management and intelligent control.


Sign in / Sign up

Export Citation Format

Share Document