Leaf structural traits of two Restinga plant species with different resistance pattern to iron toxicity

Botany ◽  
2021 ◽  
Author(s):  
Brenda Vila Nova Santana ◽  
Advanio Inácio Siqueira-Silva ◽  
Talita Oliveira Araújo ◽  
Luzimar Campos da Silva

Iron mining activities are a source of particulate iron, which contaminates soil and plants of Restinga biome (Brazil). To investigate the possible effects of iron toxicity to Ipomoea pes-caprae and Canavalia rosea leaves, plants were submitted to different exposure times (12, 36, 108 and 228 hours) and iron concentrations (0.5 or 150 mg L-1, Fe2+ as FeSO4.7H2O). After 108 hours C. rosea leaves were chlorotic while I. pes-caprae leaves presented venal chlorosis and bronzing after 228 hours, both from iron excess treatment. The anatomical alterations in I. pes-caprae were more intense and appeared earlier than in C. rosea, after 36 hours exposed to iron excess. The leaf epidermal cells of I. pes-caprae presented alterations in organization, size and shape and for both species the epicuticular wax was altered and wax rupture occurred close to the stomata. The positive staining for the presence of iron in leaf tissues matches with damaged areas in I. pes-caprae leaves, indicating direct iron toxicity. I. pes-caprae was the species with the most severe symptoms while C. rosea was the most resistant one. The results support that over time, the emission of particulate matter may negatively impact the ecological succession and biodiversity of Restinga.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Romie Tignat-Perrier ◽  
Aurélien Dommergue ◽  
Alban Thollot ◽  
Christoph Keuschnig ◽  
Olivier Magand ◽  
...  

Abstract The atmosphere is an important route for transporting and disseminating microorganisms over short and long distances. Understanding how microorganisms are distributed in the atmosphere is critical due to their role in public health, meteorology and atmospheric chemistry. In order to determine the dominant processes that structure airborne microbial communities, we investigated the diversity and abundance of both bacteria and fungi from the PM10 particle size (particulate matter of 10 micrometers or less in diameter) as well as particulate matter chemistry and local meteorological characteristics over time at nine different meteorological stations around the world. The bacterial genera Bacillus and Sphingomonas as well as the fungal species Pseudotaeniolina globaosa and Cladophialophora proteae were the most abundant taxa of the dataset, although their relative abundances varied greatly based on sampling site. Bacterial and fungal concentration was the highest at the high-altitude and semi-arid plateau of Namco (China; 3.56 × 106 ± 3.01 × 106 cells/m3) and at the high-altitude and vegetated mountain peak Storm-Peak (Colorado, USA; 8.78 × 104 ± 6.49 × 104 cells/m3), respectively. Surrounding ecosystems, especially within a 50 km perimeter of our sampling stations, were the main contributors to the composition of airborne microbial communities. Temporal stability in the composition of airborne microbial communities was mainly explained by the diversity and evenness of the surrounding landscapes and the wind direction variability over time. Airborne microbial communities appear to be the result of large inputs from nearby sources with possible low and diluted inputs from distant sources.


Author(s):  
P. C. Head

Determinations have been made of paniculate iron in samples collected from Southampton Water over a period of 2 years. Concentrations of 106–1046 ug/l. were found. Total amounts of paniculate matter ranged from 1·3 to 48·6 mg/1., of which iron constituted 0–5–14%. Amounts of paniculate matter and paniculate iron showed a highly significant correlation. For one station where wind-speed data were available there was a highly significant correlation between the amount of particulate matter and the mean daily wind speed for the 4 days prior to sampling. No clearly defined seasonal variation in the amounts of particulate matter or particulate iron was found. The concentration of particulate iron in the estuary appeared to be dominantly controlled by meteorological and hydrological factors.


2014 ◽  
Vol 38 (3) ◽  
pp. 423-432 ◽  
Author(s):  
Diego Ismael Rocha ◽  
Luzimar Campos da Silva ◽  
Eduardo Gusmão Pereira ◽  
Bruno Francisco Sant'Anna-Santos ◽  
Elisa Rodrigues Gontijo ◽  
...  

This study aims to evaluate the prognostic value of microscopic parameters of asymptomatic leaves of Clusia hilariana Schltdl. subjected to particulate deposition of iron (2.14 mg cm-2 day-1) for 45 consecutive days. Samples of young and expanded leaves without symptoms were collected and subjected to light and scanning electron microscopy techniques. The height of the epidermal cells on both surfaces of the leaf and the thickness of the hypodermis, the chlorophyll parenchyma, and the leaf blade were measured. Micromorphological injury occurred in the abaxial surface of young leaves and on both surfaces of expanded leaves. Erosion of the epicuticular wax and cuticle rupture were frequent on the adaxial surface, while on the abaxial surface of both leaves there was a loss of sinuosity on the anticlinal wall of the epidermal cells, stomatal deformity and obstruction. Micromorphometric alterations were seen in all leaf tissues except in the height of epidermic cells, probably due to the thick cuticle and prominent cuticular flanges. The highest difference in thickness of the leaf blade was seen in young leaves of plants subjected to SPMFe, indicating greater sensibility to particulate iron in comparison to the expanded leaves. The micromorphological and micromorphometric alterations in the leaf blade of Clusia hilariana Schltdl. showed the prognostic potential of these tools on the evaluation of impacts caused by the deposition of particulate matter, especially in the 'Restinga' natural vegetation, where the exposure is increasing due to the presence of iron ore industry in their surroundings.


2017 ◽  
Vol 51 (11) ◽  
pp. 6610-6610 ◽  
Author(s):  
Thomas Schaubroeck ◽  
Gaby Deckmyn ◽  
Johan Neirynck ◽  
Jeroen Staelens ◽  
Sandy Adriaenssens ◽  
...  

Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 238 ◽  
Author(s):  
Minjoong J. Kim

This study focuses on the changes over time in the relationship between surface temperature and particulate matter (PM) concentration over Seoul using long-term observational data. Correlation coefficients between the daily mean PM10 concentration and surface temperature were calculated to investigate the relationship between the two. The PM10 and temperature displayed a strong positive correlation, suggesting the increase in PM was driven by large-scale synoptic patterns accompanying such high temperatures. It was found that the correlation coefficient in 2002–2009 was significantly higher than that of 2010–2017, indicating that the relationship between PM10 concentration and temperature has weakened over time in recent decades. Correlation coefficients between daily averaged temperature and the PM10 of each year were calculated to account for the decreased correlation in the most recent decade. We found that the correlation coefficients between surface temperature and PM of each year exhibited a clear negative correlation with the longitudinal position of the Siberian High, suggesting that the position of the Siberian High might affect the strength of the relationship between PM concentration and temperature over Seoul. We also found that the eastward shift of the Siberian High reduces the standard deviation of pressure over Seoul, indicating reduction of synoptic perturbation. These results imply that the eastward shift of the Siberian High in recent decades might weaken the relationship between the PM and surface temperature over Seoul. This study suggests that the relationship between PM and meteorological variables is changing over time through changes in large climate variability.


2014 ◽  
Vol 48 (18) ◽  
pp. 10785-10794 ◽  
Author(s):  
Thomas Schaubroeck ◽  
Gaby Deckmyn ◽  
Johan Neirynck ◽  
Jeroen Staelens ◽  
Sandy Adriaenssens ◽  
...  

2019 ◽  
Vol 15 (1) ◽  
Author(s):  
I. Holmer ◽  
C. M. Salomonsen ◽  
S. E. Jorsal ◽  
L. B. Astrup ◽  
V. F. Jensen ◽  
...  

Abstract Background Optimal treatment and prudent use of antimicrobials for pigs is imperative to secure animal health and prevent development of critical resistance. An important step in this one-health context is to monitor resistance patterns of important animal pathogens. The aim of this study was to investigate the antimicrobial resistance patterns of five major pathogens in Danish pigs during a period from 2004 to 2017 and elucidate any developments or associations between resistance and usage of antibiotics. Results The minimum inhibitory concentration (MIC) for Escherichia coli, Actinobacillus pleuropneumoniae, Streptococcus suis, Bordetella bronchiseptica, and Staphylococcus hyicus was determined to representatives of antibiotic classes relevant for treatment or surveillance. Escherichia coli isolates were mostly sensitive to fluoroquinolones and colistin, whereas high levels of resistance were observed to ampicillin, spectinomycin, streptomycin, sulfonamides and tetracycline. While resistance levels to most compounds remained relatively stable during the period, resistance to florfenicol increased from 2.1% in 2004 to 18.1% in 2017, likely in response to a concurrent increase in usage. A temporal association between resistance and usage was also observed for neomycin. E. coli serovars O138 and O149 were generally more resistant than O139. For A. pleuropneumoniae, the resistance pattern was homogenous and predictable throughout the study period, displaying high MIC values only to erythromycin whereas almost all isolates were susceptible to all other compounds. Most S. suis isolates were sensitive to penicillin whereas high resistance levels to erythromycin and tetracycline were recorded, and resistance to erythromycin and trimethoprim increasing over time. For S. hyicus, sensitivity to the majority of the antimicrobials tested was observed. However, penicillin resistance was recorded in 69.4–88.9% of the isolates. All B. bronchiseptica isolates were resistant to ampicillin, whereas all but two isolates were sensitive to florfenicol. The data obtained have served as background for a recent formulation of evidence-based treatment guidelines for pigs. Conclusions Antibiotic resistance varied for some pathogens over time and in response to usage. Resistance to critically important compounds was low. The results emphasize the need for continuous surveillance of resistance patterns also in pig pathogenic bacteria.


2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Anders C Erickson ◽  
Michael Brauer ◽  
Tanya Christidis ◽  
Daniel Crouse ◽  
Scott Weichenthal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document