Performance evaluation of jointed plain concrete pavements with sealed and unsealed joints in North Texas

2019 ◽  
Vol 46 (7) ◽  
pp. 601-608
Author(s):  
Mena I. Souliman ◽  
Ashish Tripathi ◽  
Lubinda F. Walubita ◽  
Mayzan M. Isied

Joint sealing in jointed plain concrete pavement (JPCP) has been practiced throughout the world for many years as it improves the performance of concrete pavements. The infiltration of water is a common problem in concrete pavements and often increases distresses, such as faulting and pumping. For this reason, sealing the joints can help reduce water infiltration. Additionally, the infiltration of sand and small stones, aggregates, or debris into the joints can also be prevented, consequently reducing joint spalling in concrete pavements. However, it is also reported that joint sealing increases the initial cost of construction, especially if the joints need to be resealed, which leads to some additional costs. In this study, the pavement distress data was collected from the long-term pavement performance (LTPP) database for all the JPCPs sections in North Texas. The study illustrates the relative field performance in terms of spalling, faulting, roughness, and deflections of JPCP sections for both sealed and unsealed LTPP sections of North Texas.

2021 ◽  
Author(s):  
Bohuslav Slánský ◽  
Vit Šmilauer ◽  
Jiří Hlavatý ◽  
Richard Dvořák

A jointed plain concrete pavement represents a reliable, historically proven technical solution for highly loaded roads, highways, airports and other industrial surfaces. Excellent resistance to permanent deformations (rutting) and also durability and maintenance costs play key roles in assessing the economic benefits, rehabilitation plans, traffic closures, consumption and recycling of materials. In the history of concrete pavement construction, slow-to-normal hardening Portland cement was used in Czechoslovakia during the 1970s-1980s. The pavements are being replaced after 40-50 years of service, mostly due to vertical slab displacements due to missing dowel bars. However, pavements built after 1996 used rapid hardening cements, resulting in long-term surface cracking and decreased durability. In order to build durable concrete pavements, slower hardening slag-blended binders were designed and tested in the restrained ring shrinkage test and in isothermal calorimetry. Corresponding concretes were tested mainly for the compressive/tensile strength evolution and deicing salt-frost scaling to meet current specifications. The pilot project was executed on a 14 km highway, where a unique temperature-strain monitoring system was installed to provide long-term data from the concrete pavement. A thermo-mechanical coupled model served for data validation, showing a beneficial role of slower hydration kinetics. Continuous monitoring interim results at 24 months have revealed small curling induced by drying and the overall small differential shrinkage of the slab.


2006 ◽  
Vol 33 (10) ◽  
pp. 1279-1286
Author(s):  
Jong-Suk Jung ◽  
Emmanuel B Owusu-Antwi ◽  
Ji-Hwan An

The objective of this study was to identify and quantify design and construction features most important to joint faulting of joint plain concrete pavements. With data obtained from the Long-Term Pavement Performance (LTPP) database, an analysis approach that combined pavement engineering expertise and modern data analysis techniques was to develop guidelines for improved design and construction of Portland cement concrete (PCC) pavement. The approach included typical preliminary analyses, but emphasis was placed on using a series of multivariate data analysis techniques. Discriminant analysis was used to develop models that classify individual pavement into performance groups developed by cluster analysis, which was used to partition the pavements into three distinct groups representing good, normal, and poor performance. These models can be used to classify and evaluate additional or new pavements performance throughout the pavement's design life. To quantify the levels of the key design and construction features that contribute to performance, the classification and regression tree procedure was used to develop tree-based models for performance measure. The analysis approach described was used to develop the guideline on the key design and construction features that can be used by designers to decrease joint faulting of jointed plain concrete pavements (JPCPs).Key words: faulting, Long-Term Pavement Performance (LTPP), jointed plain concrete pavement (JPCP), cluster analysis, discriminant analysis, classification and regression tree (CART) analysis.


2021 ◽  
Author(s):  
Carlos Echevarría ◽  
Juan Pablo Covarrubias

Joint faulting is a pavement distress that affects the comfort level of jointed plain concrete pavements. The appearance of joint faulting usually occurs in areas of high traffic of trucks at high speed. Variables such as level of rainfall and the erodibility of the subbase increases the magnitude of this phenomenon. To predict joint faulting in Thin Concrete Pavements, the design software OptiPave2, launched in 2012, used the same model developed for the Mechanistic Empirical Pavement Design Guide (MEPDG), which uses an energy differential model. After 6 years of the release of the software and after 10 years since the construction of some thin concrete pavement projects, there are pavements with clear signs of joint faulting and others without. For this reason, the OptiPave2 model was reviewed and compared with field data, concluding that the faulting model needed to be adjusted This new model was calibrated with the data from existing concrete pavement projects.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Han Jin Oh ◽  
Jun Young Park ◽  
Hyung Bae Kim ◽  
Won Kyong Jung ◽  
Jung Hun Lee

This study aimed to analyze long-term performance of JPCP (jointed plain concrete pavement) according to changes in standard mix design using evaluation of concrete properties based on Korea HPMS (highway pavement management system) and Korea LTPP (long-term pavement performance) data accumulated for over 15 years. The concrete pavements built in the 2010s by the specification of a durability-based mix design adopted in 2010 were found to have better performance with much fewer surface distresses than the concrete pavements built before 2010 by the specification of a classical strength-based mix design. Also, in order to realize long-life concrete pavement, experimental construction was carried out for high-durability concrete mix design. The performance monitoring data for the construction site implied that the high-durability mix design can make it possible to lead a long-life concrete pavement.


2003 ◽  
Vol 1853 (1) ◽  
pp. 134-142 ◽  
Author(s):  
David H. Timm ◽  
David E. Newcomb

As mechanistic-empirical (M-E) pavement design gains wider acceptance as a viable design methodology, there is a critical need for a well-calibrated design system. Calibration of the pavement performance equations is essential to link pavement responses under load to observed field performance. A field calibration procedure for asphalt pavements that incorporates live traffic, environmental effects, observed performance, and in situ material characterization was developed. The procedure follows the M-E design process, iterating the transfer function coefficients until the performance equation accurately predicts pavement distress. Test sections from the Minnesota Road Research Project were used to demonstrate the calibration process, and fatigue and rutting performance equations were developed. It is recommended that further calibration studies be undertaken with this methodology, possibly by using sections from the Long-Term Pavement Performance project.


2021 ◽  
Author(s):  
Sridhar Kasu ◽  
Amaranatha Mupireddy ◽  
Nilanjan Mitra

The state of research on narrow and non-dowel short jointed paneled concrete pavements (SPCP) is gaining attention on a large scale across the different parts of the world especially in Chile, the USA, and India. The jointed plain concrete pavements (JPCP), which are designed with slab sizes around 3.5 m x 4.5 m results in thicker slabs with a thickness of paving quality concrete (PQC) layer ranging from 280-330 mm depending on load and temperature stresses on Indian highways. In addition to thicker slabs, JPCP requires dowelled joints, which increases the initial cost of pavement. In order to reduce the thickness and initial cost of construction, the use of cast-in-situ SPCP laid on a strong foundation consisting of a dry lean concrete (DLC) base, cement treated sub base (CTSB) and subgrade is being studied. The square short slabs of size: 1 m, 1.5 m and 2 m joint spacing and of thickness 180 to 220 mm were designed and constructed as two full-scale test sections of SPCP on national highways (NH-2 and NH-33) in India. Slabs were constructed by introducing an initial vertical saw-cut of 3 to 5 mm wide and to a depth of 1/4th to 1/3rd of the thickness. The adopted construction practices through field demonstration and implication of SPCP for highways is the main thrust of the paper which helps the practitioners, designers for adopting such projects in the future.


1998 ◽  
Vol 1629 (1) ◽  
pp. 108-116 ◽  
Author(s):  
Marcelo Bustos ◽  
Hernáan E. De Solminihac ◽  
Michael I. Darter ◽  
Andres Caroca ◽  
Juan Pablo Covarrubias

A methodology for calibrating performance models for jointed plain concrete pavements (JPCP) is presented; it is based on statistical analysis of data from the Long-Term Pavement Performance (LTPP) database. The methodology provides calibration factors to pavements in four climatic regions (dry-freeze, dry-nonfreeze, wet-freeze, and wet-nonfreeze) for the JPCP performance models in HDM-4: joint faulting, transverse cracking, joint spalling, and roughness. The procedure allows calculation of global calibration factors, which does not affect significantly the quality of the prediction compared with the quality achieved through the use of regional factors.


Author(s):  
Eric D. Moody

Transverse cracking is one of the more common distress manifestations in jointed concrete pavements. While the extent of transverse cracking is largely related to the specified joint spacing, there are several other primary design variables and distress mechanisms that can cause varying degrees of transverse cracking. These primary mechanisms and their associated variables are well-documented in the literature. However, all of these mechanisms often work on the pavement simultaneously over many years and, as a result, it has historically been difficult to calibrate prediction models with field data. The Strategic Highway Research Program’s Long-Term Pavement Performance (LTPP) program has collected a significant amount of condition survey data on more than 110 jointed plain concrete pavements (JPCP) and 65 jointed reinforced concrete pavements (JRCP) throughout North America over the last 7 years. The occurrence of transverse cracking in these sections is one of the principal distresses documented in the condition surveys and therefore provides an excellent data source for examining the relationships between the various primary distress mechanisms and the actual occurrence of distress in the field. Although it is premature to develop or calibrate purely “mechanistic” models based on the LTPP data, enough data have been collected to begin analyzing this distress and its association with the numerous prediction variables in the LTPP database. A complete analysis of the transverse cracking that has occurred in these LTPP test sections, along with their respective relationships with the primary prediction variables found in the primary distress mechanisms, is provided.


Author(s):  
Ruohan Li ◽  
Jorge A. Prozzi

The objective of this study is to evaluate the field variability of jointed concrete pavement (JCP) faulting and its effects on pavement performance. The standard deviation of faulting along both the longitudinal and transverse directions are calculated. Based on these, the overall variability is determined, and the required sample sizes needed for a given precision at a certain confidence level are calculated and presented. This calculation is very important as state departments of transportation are required to report faulting every 0.1 mi to the Federal Highway Administration as required by the 2015 FAST Act. On average, twice the number of measurements are needed on jointed reinforced concrete pavements (JRCP) to achieve the same confidence and precision as on jointed plain concrete pavements (JPCP). For example, a sample size of 13 is needed to achieve a 95% confidence interval with a precision of 1.0 mm for average faulting of JPCP, while 26 measurements are required for JRCP ones. Average faulting was found to correlate with several climatic, structural, and traffic variables, while no significant difference was found between edge and outer wheelpath measurements. The application of Portland cement concrete overlay and the use of dowel bars (rather than aggregate interlock) are found to significantly reduce faulting. Older sections located on higher functional classes, and in regions of high precipitation or where the daily temperature change is larger, tend to have higher faulting, and might require larger samples sizes as compared with the rest when faulting surveys are to be conducted.


Author(s):  
Behnam Jahangiri ◽  
Punyaslok Rath ◽  
Hamed Majidifard ◽  
William G. Buttlar

Various agencies have begun to research and introduce performance-related specifications (PRS) for the design of modern asphalt paving mixtures. The focus of most recent studies has been directed toward simplified cracking test development and evaluation. In some cases, development and validation of PRS has been performed, building on these new tests, often by comparison of test values to accelerated pavement test studies and/or to limited field data. This study describes the findings of a comprehensive research project conducted at Illinois Tollway, leading to a PRS for the design of mainline and shoulder asphalt mixtures. A novel approach was developed, involving the systematic establishment of specification requirements based on: 1) selection of baseline values based on minimally acceptable field performance thresholds; 2) elevation of thresholds to account for differences between short-term lab aging and expected long-term field aging; 3) further elevation of thresholds to account for variability in lab testing, plus variability in the testing of field cores; and 4) final adjustment and rounding of thresholds based on a consensus process. After a thorough evaluation of different candidate cracking tests in the course of the project, the Disk-shaped Compact Tension—DC(T)—test was chosen to be retained in the Illinois Tollway PRS and to be presented in this study for the design of crack-resistant mixtures. The DC(T) test was selected because of its high degree of correlation with field results and its excellent repeatability. Tailored Hamburg rut depth and stripping inflection point thresholds were also established for mainline and shoulder mixes.


Sign in / Sign up

Export Citation Format

Share Document