A PROBABILISTIC APPROACH TO IDENTIFY THE REPRESENTATIVE RUT CURVE FOR A BITUMINOUS MIXTURE SPECIMEN USED IN A DRY WHEEL TRACKING TEST

Author(s):  
Syed Mubashirhussain ◽  
Venkaiah Chowdary

Rutting is considered as a highly significant failure in bituminous pavements. Wheel tracking tests are widely used laboratory simulation tests to characterize the rutting resistance of bituminous mixtures. Considerable variation is observed in the accumulated rut depth at different locations along the wheel traverse and the representative rut curve obtained from different methodologies also shows significant variations. A probabilistic approach was adopted to analyze this scatter in the rut depth at a specific number of wheel passes and reliability based rut curves were developed. Weibull and lognormal distributions are better at characterizing the scatter in the accumulated rut depths at various locations than the normal distribution. The results from the probabilistic rut data for two different binders and two different bituminous mixtures tested at six different temperatures at specific number of wheel passes showed that different representative rut curves have different percentages of reliability. This work provides a rationale for choosing a representative rut curve from different methodologies.

2011 ◽  
Vol 17 (2) ◽  
pp. 207-216 ◽  
Author(s):  
Amir Kavussi ◽  
Leila Hashemian

One of the main advantages of warm mix asphalt (WMA) used as an alternative to conventional hot mix asphalt (HMA), is to reduce mixing and compaction temperatures. This laboratory study was conducted with the aim of determining physical properties of WMA mixes produced using foam bitumen technology (WMA–Foam), while applying different mixing and compaction temperatures. The effect of laboratory compaction method on mix properties was also investigated. WMA–Foam mixes were produced, adding a soft bitumen to coarse aggregate particles at the first stage, then a hard bitumen, transformed into foam bitumen using a laboratory foam making device, was directly added to aggregates at the next stage. Compaction was performed separately applying both Marshall and gyratory compactors (GC) at different temperatures. Marshall Stability and void contents of the samples were determined as two major parameters for characterizing WMA–Foam mixes. Moisture susceptibility and rutting potential of WMA–Foam samples were evaluated using indirect tensile strength (ITS) and wheel tracking tests. In addition, separate samples were prepared, in which hydrated lime powder was added as an anti-stripping agent to improve adhesion properties of the mixes. Comparing the results of WMA–Foam mixes with control HMA of the same content, resulted in mixes with similar properties of the control HMA, with appreciably lower production and compaction temperatures of the former. It was also resulted that mixes compacted with gyratory compactor were less sensitive to temperature variations than those compacted with Marshall Hammer. Santrauka Pagrindinis šiltai maišyto asfalto mišinių privalumas, lyginant su įprastiniais karštai maišyto asfalto mišiniais, yra galimybė sumažinti asfalto mišinio maišymo ir tankinimo temperatūras. Šio laboratorinio tyrimo tikslas – nustatyti šiltai maišyto asfalto mišinių, gaminamų pagal putoto bitumo technologiją (WMA-Foam), fizines savybes taikant skirtingas maišymo ir tankinimo temperatūras. Taip pat buvo tirtas skirtingų laboratorinių tankinimo metodų poreikis asfalto mišinio savybėms. WMA-Foam technologijos mišiniai gaminti pirmame etape į stambiąsias mineralines medžiagas dedant minkštąjį bitumą, o kitame etape – kietajį bitumą specialiu laboratoriniu putojimo įrenginiu pavertus putotu bitumu dedant į pirmame etape paruoštas mineralines medžiagas. Tankinta atskirai Maršalo plūktuvu ir giratoriaus presu skirtingose mišinio temperatūrose. Maršalo bandinių pastovumas ir oro tuštumų skaičius buvo nustatyti kaip du pagrindiniai WMA-Foamtechnologijos mišinius charakterizuojantys parametrai. WMA-Foam technologijos bandinių jautrumas vandeniui ir atsparumas provėžų susidarymui buvo vertinti pagal netiesioginio tempimo jėgos ir rato riedėjimo vėžės nustatymo bandymus. Keletas bandinių papildomai buvo pagaminti su gesintosiomis kalkėmis, t. y. asfalto mišinio sukibimą gerinančiu priedu. Lyginant WMA-Foam technologijos ir karštai maišyto asfalto mišinių bandymų rezultatus nustatyta, kad identiškos sudėties WMA-Foam technologijos mišinių savybės yra panašios į karštai maišyto asfalto mišinių savybes, tačiau jos pasiekiamos pastebimai žemesnėse maišymo ir tankinimo temperatūrose. Taip pat nustatyta, kad asfalto mišinio bandiniai, pagaminti giratoriaus presu, buvo ne tokie jautrūs gamybos temperatūros kitimui, lyginant su bandiniais, pagamintais Maršalo plūktuvu.


2017 ◽  
Vol 67 (328) ◽  
pp. 138 ◽  
Author(s):  
A. P. Pérez-Fortes ◽  
M. J. Varas-Muriel ◽  
P. Castiñeiras

The asphalt surface layer is the most exposed to weather and traffic conditions on roads, especially those subjected to winter maintenance. Therefore, a deep knowledge of the mechanisms which can damage this layer is necessary to improve its design, construction and long-term use. With this purpose, two types of asphalt mixtures used on roads from NW Spain were subjected to durability tests (freezing-thaw and thermal-stress) with a saturated NaCl solution. After the durability tests, a wheel tracking test was performed on the samples, and the resultant material was analyzed by optical polarized light and fluorescence microscopy. This analysis showed that the binder-aggregate low adhesion was the main responsible of the asphalt mixture damage. This damage was concentrated in the aggregates because the binder acted as an impermeable wall. Consequently, the NaCl solution penetrated and degraded the aggregates quickly and strongly.


2021 ◽  
Vol 309 ◽  
pp. 125161
Author(s):  
Wenchang Liu ◽  
Hongwei Lin ◽  
Hongyu Guo ◽  
Hongchao Zhang ◽  
Shuguang Zhang ◽  
...  

2015 ◽  
Vol 744-746 ◽  
pp. 1273-1276
Author(s):  
Ying Wei Cheng

The pavement performance study of bituminous mixture at surface course is very important. This paper focused on comparing the pavement performance of AC-l6C, AC-l6F, Super-12.5 and SMA-16 bituminous mixtures. First the gradations and material we used were illustrated. Then the dynamic stability, water stability and texture depth of these bituminous mixtures was tested. After comparing the test data, we found that the SMA-16 bituminous mixture has the best comprehensive pavement performance and it is most suitable for the surface layer bituminous mixture of freeways in Chinese Hubei Province. Super-12.5 and AC-l6C is applicable too, but AC-l6F is improper in this region.


Author(s):  
Biswajit K. Bairgi ◽  
A.S.M. Asifur Rahman ◽  
Rafiqul A. Tarefder ◽  
Matias M. Mendez Larrain

Warm-mix asphalt (WMA) technologies allow binder softening for compaction benefits. Lower production temperature also causes reduced short-term aging in WMA. Considering the long-term implication of the reduced aging and binder softening, WMA is being questioned about its rutting characteristics. As such, this study evaluates different WMA technologies for rutting characteristics in comparison to traditional hot-mix asphalt (HMA) through laboratory and field investigation. The study utilized the long-term pavement performance (LTPP) project in the state of New Mexico called Specific Pavement Study-10 (SPS-10), which was designed to evaluate the WMA performances. The LTPP SPS-10 section includes: (i) control HMA, (ii) foaming, (iii) Evotherm, (iv) Cecabase 1, and (v) Cecabase 2 mixtures. Cecabase 2 mixture consists of a polymer-modified binder (PG 70-28+), whereas other mixtures consist of PG 70-28 binder. The aggregate type, properties, and gradations are the same in all the sections. Laboratory evaluation of rutting was conducted through the Hamburg wheel tracking test. Long-term field rutting was evaluated through Mandli’s pavement profile scanner, a laser-based distress evaluation technology. The study found that WMA with foaming, Evotherm, or Cecabase shows slightly higher rutting compared with the control HMA; however, all the sections satisfied laboratory and field rutting criteria. The use of a polymer-modified binder in WMA significantly improves the rutting characteristics.


2011 ◽  
Vol 57 (4) ◽  
pp. 401-423
Author(s):  
P. Zielinski

Abstract The paper presents the results of an extensive investigation of asphalt concrete specimens with geosynthetic interlayer. The subject of this research is evaluation of influence of geosynthetics interlayer applied to bituminous pavements on interlayer bonding of specimens. The results of the tests proves that when geosynthetic is used, the bonding of interlayer depends mainly on the type of bituminous mixture, the type of geosynthetic, and the type and amount of bitumen used for saturation and sticking of geosynthetic. The amount of bitumen used in order to saturate and fix the geosynthetic significantly changes the interlayer bonding of specimens.


2013 ◽  
Vol 668 ◽  
pp. 292-296
Author(s):  
Ya Li Ye ◽  
Chuan Yi Zhuang ◽  
Jia Bo Hu

With the early asphalt pavements have been into the stage of medium maintenance or overhaul, recycling is a very important way for waste asphalt mixtures. A sample was taken in the expressway from Huhhot to Baotou, and the waste mixtures were extracted from field and sieved; so that the new aggregates can be determined and mix design was carried. With the aid of the penetration, the softening point and the viscosity in 135°C test, the quantity of the regenerant and the asphalt content were ascertained. Through the high temperature stable performance, the anti-low temperature performance, the water stability and the Hamburg wheel-tracking test, the appropriate gradation and the optimum asphalt content were determined. The test results showed that the pavement performance of the waste asphalt mixture was enhanced obviously with hot in-place recycling, and it has achieved technical parameters for old asphalt mixture.


2014 ◽  
Vol 1049-1050 ◽  
pp. 422-425
Author(s):  
Chao Peng ◽  
Jian Ying Yu ◽  
Jing Dai ◽  
Zhi Jie Zhao ◽  
Jing Yi Fu ◽  
...  

Effect of a chloride deicing additive (Cl-DIA) on the performance of asphalt mixture was investigated by evaluating the moisture, cracking and rutting resistance. Freeze-thaw splitting test result showed that asphalt mixture containing Cl-DIA weakened moisture resistance to some extent but it was still applicable for asphalt pavement. Wheel-tracking test indicated that Cl-DIA evidently improved the rutting resistance of the asphalt mixture and the weight concentration of Cl-DIA in asphalt mixture had to exceed 3%. Beam bending test implied that Cl-DIA did not help for the cracking of the asphalt mixture.


Sign in / Sign up

Export Citation Format

Share Document