Genesis of the Changlingzi Zn–Pb deposit in the southern Great Xing’an Range, northeastern China: constraints from fluid inclusions and H–O–S–Pb isotope systematics

2019 ◽  
Vol 56 (1) ◽  
pp. 16-31
Author(s):  
Qing-Zhan Liu ◽  
Yi Han ◽  
Ke-Yong Wang ◽  
Wen Li ◽  
Jian Li ◽  
...  

The Changlingzi Pb–Zn deposit is located in the southern Great Xing’an Range metallogenic belt of Northeast China. This deposit experienced two types of mineralization including skarn (ore block I) and hydrothermal vein (ore block II), and their orebodies are hosted mainly in the Lower Permian Zhesi Formation. The hydrothermal mineralization is classified into two metallogenic periods: skarn (stage 1) and sulfide (stages 2, 3, and 4). The skarn period affected only the ore block I, whereas the sulfide period similarly affected the two ore blocks. Fluid inclusion studies indicate that the ore-forming fluids during the early stage were medium- to high-temperature, high-salinity heterogeneous NaCl–H2O fluids, and that they eventually evolved to low-temperature, low-salinity homogeneous NaCl–H2O fluids by late stage. Studies of the hydrogen and oxygen isotope compositions (δ18OH2O = −13.85‰ to 3.95‰, δDH2O = −132.8‰ to −102.7‰) show that the ore-forming fluids gradually evolved from magmatic water to meteoric water. Sulfur and lead date suggest that the ore-forming materials were probably derived from deep magma and the Permian strata. Although our data show that ore blocks I and II, in terms of genesis, were skarn- and medium- to low-temperature hydrothermal vein-types, respectively, the ore-forming fluids of both ore blocks were the same period, and the differences in mineralization type can be related to the wall rocks.

2021 ◽  
Author(s):  
Chaozhuang Xi ◽  
Minghong Zheng ◽  
Ling He ◽  
Haodong Xia

AbstractThe Abra deposit, a large lead-silver-copper–gold polymetallic deposit in Western Australia, is located at the eastern of the metallogenic belt of the Jillawarra basin in the Bangemall basin. The 4th to the 6th rock section of the Irrigully Group of Edmund Series are the principal ore-host strata, composed mainly of sandstone and fine sandstone. The orebody in Abra can be classified into two types as upper layer-like lead-silver and lower veins or netvein copper–gold. The metal minerals are mainly galena, chalcopyrite, and pyrite, while the gangue minerals are mainly quartz, dolomite, and barite. Both Re-Os isotopic age of the pyrite (1329.5 ± 98 Ma) with the initial (187Os/188Os) = 5.0 ± 3.8 and Pb isotopic compositions (206Pb/204Pb = 15.914–15.967, 207Pb/204Pb = 15.425–15.454, 208Pb/204Pb = 35.584–35.667) suggests that the metal minerals were sourced from the wall-rocks. δDV-SMOW values of quartz range from -35‰ to -17‰ whereas δ18OV-SMOW value range from 12‰ to 16‰ which indicates that the ore-forming fluids of Abra were medium–low temperature and medium–low salinity, and were mainly metamorphic water and secondary atmospheric precipitation. When the medium–low temperature ore-forming fluids are mixed with oxidizing reducing fluids carrying a large number of metal substances, a large number of ore-forming substances will be precipitated when the physical and chemical conditions change, thus it can be considered that the Abra deposit is a medium–low temperature hydrothermal polymetallic deposit.


Author(s):  
L. Vacca-Galloway ◽  
Y.Q. Zhang ◽  
P. Bose ◽  
S.H. Zhang

The Wobbler mouse (wr) has been studied as a model for inherited human motoneuron diseases (MNDs). Using behavioral tests for forelimb power, walking, climbing, and the “clasp-like reflex” response, the progress of the MND can be categorized into early (Stage 1, age 21 days) and late (Stage 4, age 3 months) stages. Age-and sex-matched normal phenotype littermates (NFR/wr) were used as controls (Stage 0), as well as mice from two related wild-type mouse strains: NFR/N and a C57BI/6N. Using behavioral tests, we also detected pre-symptomatic Wobblers at postnatal ages 7 and 14 days. The mice were anesthetized and perfusion-fixed for immunocytochemical (ICC) of CGRP and ChAT in the spinal cord (C3 to C5).Using computerized morphomety (Vidas, Zeiss), the numbers of IR-CGRP labelled motoneurons were significantly lower in 14 day old Wobbler specimens compared with the controls (Fig. 1). The same trend was observed at 21 days (Stage 1) and 3 months (Stage 4). The IR-CGRP-containing motoneurons in the Wobbler specimens declined progressively with age.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 448 ◽  
Author(s):  
Shun-Da Li ◽  
Zhi-Gao Wang ◽  
Ke-Yong Wang ◽  
Wen-Yan Cai ◽  
Da-Wei Peng ◽  
...  

The Jinchang gold deposit is located in the eastern Yanji–Dongning Metallogenic Belt in Northeast China. The orebodies of the deposit are hosted within granite, diorite, and granodiorite, and are associated with gold-mineralized breccia pipes, disseminated gold in ores, and fault-controlled gold-bearing veins. Three paragenetic stages were identified: (1) early quartz–pyrite–arsenopyrite (stage 1); (2) quartz–pyrite–chalcopyrite (stage 2); and (3) late quartz–pyrite–galena–sphalerite (stage 3). Gold is hosted predominantly within pyrite. Pyrite separated from quartz–pyrite–arsenopyrite cement within the breccia-hosted ores (Py1) yield a Re–Os isochron age of 102.9 ± 2.7 Ma (MSWD = 0.17). Pyrite crystals from the quartz–pyrite–chalcopyrite veinlets (Py2) yield a Re–Os isochron age of 102.0 ± 3.4 Ma (MSWD = 0.2). Pyrite separated from quartz–pyrite–galena–sphalerite veins (Py3) yield a Re–Os isochron age of 100.9 ± 3.1 Ma (MSWD = 0.019). Re–Os isotopic analyses of the three types of auriferous pyrite suggest that gold mineralization in the Jinchang Deposit occurred at 105.6–97.8 Ma (includes uncertainty). The initial 187Os/188Os values of the pyrites range between 0.04 and 0.60, suggesting that Os in the pyrite crystals was derived from both crust and mantle sources.


2021 ◽  
Vol 29 ◽  
pp. 297-309
Author(s):  
Xiaohui Chen ◽  
Wenbo Sun ◽  
Dan Xu ◽  
Jiaojiao Ma ◽  
Feng Xiao ◽  
...  

BACKGROUND: Computed tomography (CT) imaging combined with artificial intelligence is important in the diagnosis and prognosis of lung diseases. OBJECTIVE: This study aimed to investigate temporal changes of quantitative CT findings in patients with COVID-19 in three clinic types, including moderate, severe, and non-survivors, and to predict severe cases in the early stage from the results. METHODS: One hundred and two patients with confirmed COVID-19 were included in this study. Based on the time interval between onset of symptoms and the CT scan, four stages were defined in this study: Stage-1 (0 ∼7 days); Stage-2 (8 ∼ 14 days); Stage-3 (15 ∼ 21days); Stage-4 (> 21 days). Eight parameters, the infection volume and percentage of the whole lung in four different Hounsfield (HU) ranges, ((-, -750), [-750, -300), [-300, 50) and [50, +)), were calculated and compared between different groups. RESULTS: The infection volume and percentage of four HU ranges peaked in Stage-2. The highest proportion of HU [-750, 50) was found in the infected regions in non-survivors among three groups. CONCLUSIONS: The findings indicate rapid deterioration in the first week since the onset of symptoms in non-survivors. Higher proportion of HU [-750, 50) in the lesion area might be a potential bio-marker for poor prognosis in patients with COVID-19.


1999 ◽  
Vol 73 (2) ◽  
pp. 164-175 ◽  
Author(s):  
David K. Brezinski

Based on range data and generic composition, four stages of evolution are recognized for late Paleozoic trilobites of the contiguous United States. Stage 1 occurs in the Lower Mississippian (Kinderhookian-Osagean) and is characterized by a generically diverse association of short-ranging, stenotopic species that are strongly provincial. Stage 2 species are present in the Upper Mississippian and consist of a single, eurytopic, pandemic genus, Paladin. Species of Stage 2 are much longer-ranging than those of Stage 1, and some species may have persisted for as long as 12 m.y. Stage 3 is present within Pennsylvanian and Lower Permian strata and consists initially of the eurytopic, endemic genera Sevillia and Ameura as well as the pandemic genus Ditomopyge. During the middle Pennsylvanian the very long-ranging species Ameura missouriensis and Ditomopyge scitula survived for more than 20 m.y. During the late Pennsylvanian and early Permian, a number of pandemic genera appear to have immigrated into what is now North America. Stage 4 is restricted to the Upper Permian (late Leonardian-Guadalupian) strata and is characterized by short-ranging, stenotopic, provincial genera.The main causal factor controlling the four-stage evolution of late Paleozoic trilobites of the United States is interpreted to be eustacy. Whereas Stage 1 represents an adaptive radiation developed during the Lower Mississippian inundation of North America by the Kaskaskia Sequence, Stage 2 is present in strata deposited during the regression of the Kaskaskia sea. Stage 3 was formed during the transgression and stillstand of the Absaroka Sequence and, although initially endemic, Stage 3 faunas are strongly pandemic in the end when oceanic circulation patterns were at a maximum. A mid-Leonardian sea-level drop caused the extinction of Stage 3 fauna. Sea-level rise near the end of the Leonardian and into the Guadalupian created an adaptive radiation of stentopic species of Stage 4 that quickly became extinct with the latest Permian regression.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-25
Author(s):  
Lu Zhang ◽  
Shao-Yong Jiang ◽  
Suo-Fei Xiong ◽  
Deng-Fei Duan

The Fuzishan Cu-Mo deposit is located in the Edong district of the Middle-Lower Yangtze River Metallogenic Belt, China. The orebodies mainly occurred as lenticular and bedded shapes in the skarn zone between the Lower Permian Qixia Formation carbonate rocks and the quartz diorite. Four paragenetic stages have been recognized based on petrographic observations: (1) prograde skarn stage, (2) retrograde skarn stage, (3) quartz-sulfide stage, and (4) carbonate stage. Six fluid inclusion types were recognized: S1(vapor + liquid + halite ± other daughter minerals), S2(vapor + liquid + daughter minerals except halite), LV(rich liquid + vapor), VL(rich vapor + liquid), V (vapor), and L (liquid) types. Fluid inclusion studies show distinct variations in composition, final homogenization temperature, and salinity in four stages. Daughter minerals of the primary fluid inclusions include chalcopyrite, molybdenite, hematite, anhydrite, calcite, and halite in the prograde skarn stage and hematite, calcite, and sulfide (?) in the retrograde skarn stage. No daughter minerals occurred in the quartz-sulfide and carbonate stages. Final homogenization temperatures recorded in these stages are from 405 to >550°C, from 212 to 498°C, from 150 to 485°C, and from 89 to 223°C, respectively, while salinities are from 3.7 to 42.5, from 2.6 to 18.5, from 2.2 to 17.9, and from 0.2 to 11.5 wt.% NaCl equivalent, respectively. The coexisting VLand S1type fluid inclusions show similar homogenization temperature of 550 to about 650°C in the prograde skarn stage, indicating that immiscibility occurred at lithostatic pressure of 700 bars to perhaps 1000 bars, corresponding to a depth of 2.6 km to about 3.7 km. The coeval VLand LVtypes fluid inclusions with homogenization temperature of 350 to 400°C in the late retrograde skarn and quartz-sulfide stages suggest that boiling occurred under hydrostatic pressure of 150 to 280 bars, equivalent to a depth of 1.5 to 2.8 km. Mo mineralization in the retrograde stage predated Cu mineralization which mainly occurred in the quartz-sulfide stage. Fluid compositions indicate that ore-forming fluid has highfO2and rich Cu and Mo concentration in the early stage, while relatively lowerfO2and poor Cu and Mo concentration in the middle to late stages. Microthermometric data show a decreasing trend in temperature and salinity in the fluid evolution process. Decreasing temperature and boiling event may be the main factors that control the ore precipitation.


Diagnostics ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 332 ◽  
Author(s):  
Petr G. Lokhov ◽  
Oxana P. Trifonova ◽  
Dmitry L. Maslov ◽  
Steven Lichtenberg ◽  
Elena E. Balashova

A laboratory-developed test (LDT) is a type of in vitro diagnostic test that is designed, manufactured and used in the same laboratory (i.e., an in-house test). In this study, a metabolomics-based LDT was developed. This test involves a blood plasma preparation, direct-infusion mass spectrometry analysis with a high-resolution mass spectrometer, alignment and normalization of mass peaks using original algorithms, metabolite annotation by a biochemical context-driven algorithm, detection of overrepresented metabolic pathways and results in a visualization in the form of a pathway names cloud. The LDT was applied to detect early stage Parkinson’s disease (PD)—the diagnosis of which currently requires great effort due to the lack of available laboratory tests. In a case–control study (n = 56), the LDT revealed a statistically sound pattern in the PD-relevant pathways. Usage of the LDT for individuals confirmed its ability to reveal this pattern and thus diagnose PD at the early-stage (1–2.5 stages, according to Hoehn and Yahr scale). The detection of this pattern by LDT could diagnose PD with a specificity of 64%, sensitivity of 86% and an accuracy of 75%. Thus, this LDT can be used for further widespread testing.


2012 ◽  
Vol 38 (8) ◽  
pp. 755-758
Author(s):  
V. Pesin ◽  
D. Rybin ◽  
Ya. Dyatlova ◽  
A. Osmakov
Keyword(s):  

Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1524
Author(s):  
Taito Kobayashi ◽  
Kei Kumakura ◽  
Asaka Takahashi ◽  
Hiroki Matsuoka

This study was performed to clarify the enhancement of the 4-methylthio-3-butenyl isothiocyanate induced yellowing of salted radish root (takuan-zuke) by low pH during short-term salt-aging at low temperature and low salinity. We used two different methods to prepare the dehydrated daikon prior to salt-aging: air-drying outdoors (hoshi takuan-zuke) or salting with a stone press (shio-oshi takuan-zuke). Low salt-aging at low temperature was carried out under pH control with citrate-phosphate buffer. The yellowing of both types of takuan-zuke was accelerated below pH 5, and the color of air-dried takuan-zuke was deeper than that of salt-pressed takuan-zuke. To elucidate this phenomenon, several previously reported yellowing-related compounds were analyzed by high-performance liquid chromatography. The result showed that the production of the primary pigment, 2-[3-(2-thioxopyrrolidin-3-ylidene)methyl]-tryptophan, was low compared with that in previous reports. Therefore, we suggest that an unknown pigment was generated through a previously unreported pathway.


Sign in / Sign up

Export Citation Format

Share Document