Upper Paleozoic stratigraphy and detrital zircon geochronology along the northwest margin of the Sverdrup Basin, Arctic Canada: insight into the paleogeographic and tectonic evolution of Crockerland

2020 ◽  
pp. 1-24
Author(s):  
Bradley J. Galloway ◽  
Keith Dewing ◽  
Benoit Beauchamp ◽  
William Matthews

The upper Paleozoic succession along the northwest margin of the Canadian Arctic Sverdrup Basin is little studied and poorly understood yet has the potential to yield insights into the paleogeographic and tectonic evolution of the Arctic regions including Crockerland. Carboniferous and Permian drill cuttings were collected from five exploration wells on Brock, Mackenzie King, and Ellef Ringnes islands. Seven unconformity-bounded sequences were identified and correlated. Reflection seismic interpreted on Ellef Ringnes Island indicates that a major syn-sedimentary fault offsets the Mississippian succession bounding a down-to-the-north half-graben. Late Pennsylvanian (Gzhelian) fault reactivation, associated with the Melvillian Disturbance, created a depression that extended northward and was bordered to the south by a structural high. Episodic minor fault reactivation occurred until the Early–Middle Permian boundary. During the latest Early Permian (Kungurian), sand derived from Crockerland prograded southward onto the Sverdrup Basin’s northwest margin and continued into the Roadian. After a lull during the Wordian, clastic progradation resumed in the Capitanian. Detrital zircon U–Pb ages recovered from Kungurian and Roadian samples on Brock and Ellef Ringnes islands display Devonian Clastic Wedge (DCW) signatures. A Moscovian–Artinskian carbonate blanket likely covered Crockerland and sheltered DCW material from erosion, implying it was a subsiding, carbonate bank throughout most of the Pennsylvanian – Early Permian. Base level fall in the Kungurian, associated with a transition to a more humid climate, breached these carbonate rocks to allow erosion and transportation of DCW material. Recycling of the DCW started earlier (Artinskian) and peaked later (Wordian) along the southern margin of the basin.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiaxuan Song ◽  
Hujun Gong ◽  
Jingli Yao ◽  
Huitao Zhao ◽  
Xiaohui Zhao ◽  
...  

The Paleozoic strata are widely distributed in the northwest of the Ordos Basin, and the provenance attributes of the basin sediments during this period are still controversial. In this paper, the detrital zircon LA-MC-ICPMS U-Pb age test was conducted on the drilling core samples of the Shanxi Formation of the Upper Paleozoic in the Otuokeqi area of the Ordos Basin, and the provenance age and the characteristic of the Shanxi formation in the Otuokeqi area in the northwest were discussed. The cathodoluminescence image shows that the detrital zircon has a clear core-edge structure, and most of the cores have clear oscillatory zonings, which suggests that they are magmatic in origin. Zircons have no oscillatory zoning structure that shows the cause of metamorphism. The age of detrital zircon is dominated by Paleoproterozoic and can be divided into four groups, which are 2500~2300 Ma, 2100~1600 Ma, 470~400 Ma, and 360~260 Ma. The first two groups are the specific manifestations of the Precambrian Fuping Movement (2.5 billion years) and the Luliang Movement (1.8 billion years) of the North China Craton. The third and fourth groups of detrital zircons mainly come from Paleozoic magmatic rocks formed by the subduction and collision of the Siberian plate and the North China plate. The ε Hf t value of zircon ranges from -18.36 to 4.33, and the age of the second-order Hf model T DM 2 ranges from 2491 to 1175 Ma. The source rock reflecting the provenance of the sediments comes from the material recycling of the Paleoproterozoic and Mesoproterozoic in the crust, combined with the Meso-Neoproterozoic detrital zircons discovered this time, indicating that the provenance area has experienced Greenwellian orogeny.


2021 ◽  
pp. 1-31
Author(s):  
Hai-peng Xu ◽  
Kyi Pyar Aung ◽  
Yi-chun Zhang ◽  
G.R. Shi ◽  
Fu-long Cai ◽  
...  

Abstract The tectonic evolution of the Sibumasu Block during the Permian remains controversial, and Permian faunas and their paleobiogeographic affinities provide some insight into its paleogeographic and tectonic evolutionary histories. In this paper, a new brachiopod fauna dominated by Spinomartinia prolifica Waterhouse, 1981 is described from the uppermost part of the Taungnyo Group in the Zwekabin Range, eastern Myanmar. This brachiopod fauna includes 23 species and its age is well constrained as late Kungurian by the associated conodonts, i.e., Vjalovognathus nicolli Yuan et al., 2016 and Mesogondolella idahoensis (Youngquist, Hawley, and Miller, 1951), contrary to the late Sakmarian age given to the same brachiopod faunas previously reported from southern Thailand and Malaysia. Based on comprehensive comparisons of the Cisuralian brachiopod faunas and other data in different parts of the Sibumasu Block, we consider that they are better subdivided into two independent stratigraphic assemblages, i.e., the lower (earlier) Bandoproductus monticulus-Spirelytha petaliformis Assemblage of a Sakmarian to probably early Artinskian age, and the upper (younger) Spinomartinia prolifica-Retimarginifera alata Assemblage of a late Kungurian age. The former assemblage is a typical cold-water fauna, mainly composed of Gondwanan-type genera, e.g., Bandoproductus Jin and Sun, 1981, Spirelytha Fredericks, 1924, and Sulciplica Waterhouse, 1968. The latter assemblage is strongly characterized by an admixture of both Cathaysian and Gondwanan elements, as well as some genera restricted to the Cimmerian continents. Notably, the spatial distribution pattern of these two separate brachiopod assemblages varies distinctly. The Sakmarian cold-water brachiopod faunas have been found in association with glacial-marine diamictites throughout the Sibumasu Block including both the Irrawaddy and Sibuma blocks. In contrast, the Kungurian biogeographically mixed brachiopod faunas are only recorded in the Irrawaddy Block, unlike the Sibuma Block that contains a contemporaneous paleotropical Tethyan fusuline fauna. Thus, it appears likely that by the end of Cisuralian (early Permian), the Sibumasu Block comprised the Irrawaddy Block in the south with cool climatic conditions, and the Sibuma Block in the north with a temperate to warm-water environment, separated by the incipient Thai-Myanmar Mesotethys.


2016 ◽  
Vol 7 (5) ◽  
pp. 733-741 ◽  
Author(s):  
Haiquan Yin ◽  
Hongrui Zhou ◽  
Weijie Zhang ◽  
Xiaoming Zheng ◽  
Shengyu Wang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jialin Wang ◽  
Chaodong Wu ◽  
Yue Jiao ◽  
Bo Yuan

AbstractDue to the unknown Triassic volcanism in the Junggar Basin, the Middle–Late Triassic sedimentary provenance in the southern Junggar Basin (SJB) has long been controversial. Detrital zircon grains from 13 samples of the Middle–Upper Triassic Xiaoquangou Group in the SJB were analyzed using zircon U–Pb geochronology to constrain the provenance of Triassic sedimentary rocks and to further understand their source-to-sink system. Comparison of detrital zircon U–Pb age distributions for 13 samples reveals that the Triassic age populations predominate in sediments of the northern Bogda Mountains, with subordinate in the southern Bogda Mountains, and no or minimal in the North Tianshan (NTS). Coupled with sandstone petrological, sedimentary geochemical and paleocurrent data, the Triassic detrital zircon grains of the Xiaoquangou Group in the SJB were probably input from the Bogda Mountains. As Pennsylvanian and Mississippian zircon grains are mainly derived from the NTS and Central Tianshan (CTS), the provenance of the Xiaoquangou Group includes the NTS, CTS and Bogda Mountains. But the different samples in different sink areas have different provenances, originating from at least four source-to-sink systems. The supply of sediments from the Bogda Mountains started in the Late Triassic, suggesting initial uplift of the Bogda Mountains.


Sign in / Sign up

Export Citation Format

Share Document