scholarly journals Effects of wind damage on the optimal management of boreal forests under current and changing climatic conditions

2017 ◽  
Vol 47 (2) ◽  
pp. 246-256 ◽  
Author(s):  
Ane Zubizarreta-Gerendiain ◽  
Timo Pukkala ◽  
Heli Peltola

This study presents a new method for considering the risk of wind damage in forest planning and for predicting the amount of damage and its effects on timber production, economic profitability and carbon balance of forestry. The effects of wind damage on the optimal management of boreal forests under current and changing climatic conditions were analyzed by comparing four forest management plans. A reference plan maximized net present value (NPV) with even-flow harvesting constraints. The second plan minimized height differences between adjacent stands, the third minimized height differences while simultaneously maximizing NPV, and the fourth maximized height differences between adjacent stands. To obtain damage-adjusted results, schedules that belonged to the optimal management plans were simulated with wind damage, taking into account the shelter provided by adjacent stands. Maximizing NPV and simultaneously minimizing height differences resulted in the highest damage-adjusted NPV. Increasing wind damage increased carbon balance of forest soil but decreased the total carbon balance of forestry as it decreased the carbon balances of living forest biomass and wood-based products. Climate change slightly improved the total carbon balance of forestry. If wind damage was ignored in calculations, NPV, total carbon balance of forestry, and timber production were overestimated.

Author(s):  
Olalla Díaz-Yáñez ◽  
Timo Pukkala ◽  
Petteri Packalen ◽  
Manfred J Lexer ◽  
Heli Peltola

Abstract Boreal forests produce multiple ecosystem services for the society. Their trade-offs determine whether they should be produced simultaneously or whether it is preferable to assign separate areas to different ecosystem services. We use simulation and optimization to analyse the correlations, trade-offs and production levels of several ecosystem services in single- and multi-objective forestry over 100 years in a boreal forest landscape. The case study area covers 3600 ha of boreal forest, consisting of 3365 stands. The ecosystem services and their indicators (in parentheses) considered are carbon sequestration (forestry carbon balance), biodiversity (amount of deadwood and broadleaf volume), economic profitability of forestry (net present value of timber production) and timber supply to forest industry (volume of harvested timber). The treatment alternatives simulated for each of the stands include both even-aged rotation forestry (thinning from above with clear cut) and continuous cover forestry regimes (thinning from above with no clear cut). First, we develop 200 Pareto optimal plans by maximizing multi-attribute utility functions using random weights for the ecosystem service indicators. Second, we compare the average level of ecosystem services in single- and multi-objective forestry. Based on our findings, forestry carbon balance and the amount of deadwood correlate positively with each other, and both of them correlate negatively with harvested timber volume and economic profitability of forestry. Despite this, the simultaneous maximization of multiple objectives increased the overall production levels of several ecosystem services, which suggests that the management of boreal forests should be multi-objective to sustain the simultaneous provision of timber and other ecosystem services.


2019 ◽  
Vol 92 (5) ◽  
pp. 648-658 ◽  
Author(s):  
J Routa ◽  
A Kilpeläinen ◽  
V -P Ikonen ◽  
A Asikainen ◽  
A Venäläinen ◽  
...  

Abstract The aim of this study was to examine how intensified silviculture affects timber production (sawlogs and pulpwood) and its economic profitability (net present value [NPV], with 2 per cent interest rate) based on forest ecosystem model simulations. The study was conducted on Norway spruce and Scots pine stands located on medium-fertile upland forest sites under middle boreal conditions in Finland, under current climate and minor climate change (the RCP2.6 forcing scenario). In intensified silviculture, improved regeneration materials were used, with 10–20 per cent higher growth than the unimproved materials, and/or nitrogen (N) fertilization of 150 kg ha−1, once or twice during a rotation of 50–70 years. Compared to the baseline management regime, the use of improved seedlings, alone or together with N fertilization, increased timber production by up to 26–28 per cent and the NPV by up to 32–60 per cent over rotation lengths of 60–70 years, regardless of tree species (although more in spruce) or climate applied. The use of improved seedlings affected timber yield and NPV more than N fertilization. Minor climate change also increased these outcomes in Scots pine, but not in Norway spruce.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 309 ◽  
Author(s):  
Iván Franco-Manchón ◽  
Kauko Salo ◽  
Juan Oria-de-Rueda ◽  
José Bonet ◽  
Pablo Martín-Pinto

Natural forests and plantations of Pinus are ecologically and economically important worldwide, producing an array of goods and services, including the provision of non-wood forest products. Pinus species play an important role in Mediterranean and boreal forests. Although Pinus species seem to show an ecological adaptation to recurrent wildfires, a new era of mega fires is predicted, owing to climate changes associated with global warming. As a consequence, fungal communities, which are key players in forest ecosystems, could be strongly affected by these wildfires. The aim of this study was to observe the fungal community dynamics, and particularly the edible fungi, in maritime (Pinus pinaster Ait.), austrian pine (Pinus nigra J.F. Arnold), and scots pine (Pinus sylvestris L.) forests growing under wet Mediterranean, dry Mediterranean, and boreal climatic conditions, respectively, by comparing the mushrooms produced in severely burned Pinus forests in each area. Sporocarps were collected during the main sampling campaigns in non-burned plots, and in burned plots one year and five years after fire. A total of 182 taxa, belonging to 81 genera, were collected from the sampled plots, indicating a high level of fungal diversity in these pine forests, independent of the climatic conditions. The composition of the fungal communities was strongly affected by wildfire. Mycorrhizal taxa were impacted more severely by wildfire than the saprotrophic taxa, particularly in boreal forests—no mycorrhizal taxa were observed in the year following fire in boreal forests. Based on our observations, it seems that fungal communities of boreal P. sylvestris forests are not as adapted to high-intensity fires as the Mediterranean fungal communities of P. nigra and P. pinaster forests. This will have an impact on reducing fungal diversity and potential incomes in rural economically depressed areas that depend on income from foraged edible fungi, one of the most important non-wood forest products.


2011 ◽  
Vol 37 (6) ◽  
pp. 596-611 ◽  
Author(s):  
Hans-Erik Andersen ◽  
Jacob Strunk ◽  
Hailemariam Temesgen ◽  
Donald Atwood ◽  
Ken Winterberger

FLORESTA ◽  
2004 ◽  
Vol 34 (3) ◽  
Author(s):  
Niro Higuchi ◽  
Jeffrey Chambers ◽  
Joaquim Dos Santos ◽  
Ralfh João Ribeiro ◽  
Alberto Carlos Martins Pinto ◽  
...  

As três parcelas permanentes usadas neste estudo são testemunhas (não perturbadas) de um experimento de manejo florestal do Instituto Nacional de Pesquisas da Amazônia, no município de Manaus (AM). Essas parcelas têm sido monitoradas desde 1980, mas para efeito deste estudo, foram consideradas 12 medições repetidas no período 1986-2000. Durante este período, o fenômeno El Niño (seca anormal na região) ocorreu em duas ocasiões, em 1992-93 e 1997-98, sendo que o último foi seguido do La Niña (chuva anormal na região), em 1999. Devido a esses fenômenos, as taxas de recrutamento e mortalidade foram iguais, 0,7%, durante o período observado. No entanto, a acumulação (fixação na árvore) de carbono, foi de 16 toneladas métricas, dando um incremento periódico anual significativo (p = 0,039), em torno de 1,2 t/ha/ano. CARBON BALANCE AND DYNAMICS OF PRIMARY VEGETATION IN THE CENTRAL AMAZON Abstract The three permanent forest inventory plots used for this study were control plots (not disturbed) from a forest management project of the National Institute of Amazon Research (INPA) in the Brazilian State of Amazonas. These plots have been monitored since 1980, although for this study the period from 1986-2000 was considered. During this period, the El Niño phenomenon, which causes increased drought in the region, occurred on two occasions (1992-93 and 1997-98), followed by La Niña which causes increased precipitation in the region (1999-2000). Despite of this change in climate, recruitment and mortality rates were equal throughout the period at 0.7% yr-1. During the same period, carbon accumulation in forest biomass was 16 Mg, resulting in a statistically significant (p = 0.039) increase of about 1.2 Mg biomass ha-1 yr-1.


FLORESTA ◽  
2019 ◽  
Vol 49 (4) ◽  
pp. 735
Author(s):  
Luan Demarco Fiorentin ◽  
Julio Eduardo Arce ◽  
Allan Libanio Pelissari ◽  
Rodrigo Otávio Veiga de Miranda ◽  
Thaís Wisniewski de Freitas

This study aimed to evaluated two optimized planning strategies and analyze their performance in timber production. Data were obtained in Pinus spp. stands from a forestry company with unbalanced planted area over time. Maximization models of forest production (1) and net present value (2) were formulated and two minimization objective functions of the production deviation (3) and minimum and maximum production oscillation (4) were tested as alternatives to the traditional models. The highest thinning and clearcutting average areas were obtained in strategy 1. Strategies 1 and 2 resulted in the greatest variability of forestry operations. All strategies resulted in the highest timber production for sawn and special sawn wood and the lowest for veneer, while the pulpwood volume was almost constant. Strategies 1 and 2 provided the highest average timber volume and the greatest variability in the production, while strategies 3 and 4 were more efficient, since they supplied the industrial demand with homogeneous production.


Author(s):  
Ionuț Minea ◽  
Oana Elena Chelariu

Abstract Regional water resource management plans include various scenarios related to the anomalies and trends of hydro-climatic parameters. Two methods are used for the identification of the anomalies and trends associated with high flow (annual and seasonal) of the rivers in Eastern Romania, namely the quantile perturbation method (QPM) and the partial trend method (PMT). These methods were selected due to the fact that they are suitable for data sets which do not rely on restrictive statistical assumption as common parametric and nonparametric trend tests do. For six of the nine stations analyzed, the decreasing trend in high extremes for annual high flow based on the PTM is the same as the annual trend obtained with the QPM. Using the PI index (associated with PTM) for the estimation of trend intensity, values between −2.280 and −9.015 m3/s were calculated for the decreasing trend of the annual high flow and between +1,633 m3/s (in autumn) and −9.940 m3/s (in summer) for the seasonal high flow. The results obtained on the anomalies and trends of high river flow may represent a starting point in the analysis of the evolution of water resources and their effective management.


Sign in / Sign up

Export Citation Format

Share Document