Characterization of rhizosphere and endophytic fungal communities from roots ofStipa purpureain alpine steppe around Qinghai Lake

2016 ◽  
Vol 62 (8) ◽  
pp. 643-656 ◽  
Author(s):  
Dengxue Lu ◽  
Hui Jin ◽  
Xiaoyan Yang ◽  
Denghong Zhang ◽  
Zhiqiang Yan ◽  
...  

Stipa purpurea is among constructive endemic species in the alpine steppe on the Qinghai–Xizang Plateau. To reveal the fungal community structure and diversity in the rhizosphere and roots of this important grass and to analyze the potential influence of different habitats on the structure of fungal communities, we explored the root endophyte and the directly associated rhizosphere communities of S. purpurea by using internal transcribed spacer rRNA cloning and sequencing methods. We found that the roots of S. purpurea are associated with a diverse consortium of Basidiomycota (59.8%) and Ascomycota (38.5%). Most fungi obtained from rhizosphere soil in S. purpurea have been identified as Ascomycetes, while the high proportion detected in roots were basidiomycetous endophytes. The species richness, diversity, and evenness of fungal assemblages were higher in roots than in the rhizosphere soil. Fungi inhabiting the rhizosphere and roots of S. purpurea are significantly different, and the rhizosphere and endophyte communities are largely independent with little overlap in the dominant phyla or operational taxonomic units. Taken together, these results suggested that a wide variety of fungal communities are associated with the roots and rhizosphere soil of S. purpurea and that the fungal assemblages are strongly influenced by different habitats.

2021 ◽  
Vol 233 ◽  
pp. 02031
Author(s):  
Zhenying Liu ◽  
Yan Zhao ◽  
Lingna Wang ◽  
Gaobin Pu ◽  
Yongqing Zhang

Lonicerae japonicae Flos is a traditional Chinese medicine that has the effect is used for clearing away heat and detoxification. When stored improperly, this medicine is susceptible to mold growth, causing fungal contamination, reducing its safety and clinical efficacy. In order to understand the fungal contamination of Lonicerae japonicae Flos, we utilized the Illumina NovaSeq6000 platform to characterize fungal communities associated with five moldy Lonicerae japonicae Flos samples from warehouses in China via the sequencing of fungal internal transcribed spacer 2 regions. These analyses led us to identify 3 phyla, 5 classes, 7 orders, 9 families, 13 genera, and 20 species of fungi in these samples. Of these, Ascomycota was the dominant phylum, while Cysticomycetes, Ascomycetes, and Staphylococci were relatively dominant at the class level, and the most prevalent genera were Aspergillus, Penicillium, Xanthomonas, Microcystis, Talaromyces, and Erysiphe with relative abundance values of 79%, 21%, 94%, 100%, and 98%. In summary, in the present study we conducted the ITS-based comprehensive characterization of fungal communities associated with Lonicerae japonicae Flos for the first time. This approach aims to facilitate the early detection of fungal contamination in Lonicerae japonicae Flos, providing a theoretical basis for the study of anti-mold technologies.


2021 ◽  
Vol 9 (2) ◽  
pp. 437
Author(s):  
Paula Harkes ◽  
Lisa J. M. van Heumen ◽  
Sven J. J. van den Elsen ◽  
Paul J. W. Mooijman ◽  
Mariëtte T. W. Vervoort ◽  
...  

Outside its native range, the invasive plant species giant goldenrod (Solidago gigantea) has been shown to increase belowground fungal biomass. This non-obvious effect is poorly characterized; we don’t know whether it is plant developmental stage-dependent, which fractions of the fungal community are affected, and whether it is reflected in the next trophic level. To address these questions, fungal assemblages in soil samples collected from invaded and uninvaded plots in two soil types were compared. Although using ergosterol as a marker for fungal biomass demonstrated a significant increase in fungal biomass, specific quantitative PCR (qPCR) assays did not point at a quantitative shift. MiSeq-based characterization of the belowground effects of giant goldenrod revealed a local increase of mainly Cladosporiaceae and Glomeraceae. This asymmetric boost in the fungal community was reflected in a specific shift in the fungivorous nematode community. Our findings provide insight into the potential impact of invasive plants on local fungal communities.


2021 ◽  
Vol 42 (2) ◽  
pp. 177-185
Author(s):  
S.M. Sayed ◽  
◽  
A.M. El-Shehawi ◽  
S.A. Elarnaouty ◽  
S.A. Al-Otaibi ◽  
...  

Aim: The current study aimed to characterize the composition of endophytic fungal communities related to Taify grapevine leaves. Methodology: Taify grapevine leaves were collected from three different locations at Taif region. Total DNA was extracted and the endophytic fungal communities were investigated using next generation sequencing in a metagenomics approach. Results: The obtained data detected 26 fungal operational taxonomic units (OTUs) in all locations with variation in most taxa among three locations. The phylum Ascomycota dominated relative sequence abundance (90.83%), followed by Basidiomycota at 1.82%. Other unidentified fungi at phylum level dominated 7.35% abundance level. At genus level, Alternaria and Cladosporium genera were present at all locations, while Filobasidium and Didymella were detected in two locations. Most genera, Penicillium, Hanseniaspora, Fusarium, Chrysocorona and Quambalaria were detected in one location only. Interpretation: The present study confirmed the diversity of endophytic fungi in Taify grapevine, including pathogenic and non-pathogenic species. The detected species have potential to be used as biocontrol species against economically important pathogens such as Alternaria and Hanseniaspora. This will contribute to our understanding of grapevine-endophytic fungi interaction and their utilization to enhance grapevine production and quality. Key words: Endophytes, Fungi, Grapevine, Metagenomic, Next generation sequencing


Diversity ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 432
Author(s):  
Shi Yao ◽  
Xiaona Li ◽  
Hu Cheng ◽  
Kaining Sun ◽  
Xin Jiang ◽  
...  

The rhizosphere fungal community is essential for determining plant health and improving crop productivity. The fungal community structure and functional roles in the plastic shed soils were explored using high throughput sequencing and FUNGuild in this study. The fungal community structures shifted between the rhizosphere and non-rhizosphere soils. The greatest abundance variation was observed for the rare fungal members with relative abundances <0.1%. In the rhizosphere soil of pepper, the abundance of the genera Purpureocillium, Metacorgyceps, Arthrobotrys, Cephalotheca, and Scedosporium increased significantly, among which, Purpureocillium, Arthrobotrys and Metacorgyceps exhibited biocontrol characteristics. Co-occurrence network analysis revealed different interactions of fungal communities in the rhizosphere and non-rhizosphere soils, both of which were dominated by low abundance members. More positive correlation was identified among the rare members, the fungal pathotroph functions and phthalate acid ester in the rhizosphere soil. This study highlights the important niche of the rare fungal members in soil microbial ecology under plastic shed cultivation.


Botany ◽  
2021 ◽  
Author(s):  
Juliana S Medeiros ◽  
Michael A Mann ◽  
Jean H. Burns ◽  
Sarah Kyker ◽  
David Burke

Rhododendron are popular ornamental plants which are well-known for forming mycorrhizal associations with ericoid fungi, but little is known about how host traits influence their microbiome more broadly. This study investigated leaf, root, rhizosphere soil, and bulk soil bacterial and fungal community structure for 12 Rhododendron species, representing four taxonomic clades with different leaf habits. Samples were collected when ephemeral hair roots colonized by ericoid mycorrhizae were absent, and microbial community structure was compared to leaf and root morphology for the same plants. Root morphology and the fungal communities of roots and rhizosphere soil were primarily structured by host ancestry. Leaf bacterial and fungal communities were even more distinct across clades than for roots or rhizosphere, and microbial communities of leaves and bulk soil were similarly structured by clade-wise differences in leaf morphology, suggesting a role for Rhododendron leaf litter in belowground microbial community structure. This work sheds new light on host traits influencing microbial community structure of ericaceous plants, showing a strong influence of ancestry, but also that different host traits drive bacterial and fungal communities across different plant compartments, suggesting future work on factors that drive similarity among close relatives in the non-ericoid microbes associating with Rhododendron.


2020 ◽  
Author(s):  
Paula Harkes ◽  
Lisa J.M. van Heumen ◽  
Sven J.J. van den Elsen ◽  
Paul J.W. Mooijman ◽  
Casper W. Quist ◽  
...  

AbstractOutside its native range, the invasive plant species giant goldenrod (Solidago gigantea) has been shown to increase belowground fungal biomass. This non-obvious effect is poorly characterized; we don’t know whether it is plant developmental stage-dependent, which fractions of the fungal community are affected, and whether it is reflected in the next trophic level. To address the questions, fungal assemblages in soil samples collected from invaded and non-invaded plots in two soil types were compared. Whereas ergosterol as a marker for fungal biomass demonstrated a significant increase in fungal biomass, specific qPCR assays did not point at a quantitative shift. MiSeq-based characterization of the belowground effects of giant goldenrod revealed a local increase of mainly Cladosporiaceae and Glomeraceae. This asymmetric boost in the fungal community was reflected in a specific shift in the fungivorous nematode community. Our findings provide insight in the potential impact of invasive plants on local fungal communities.


Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 172 ◽  
Author(s):  
Jelena Lazarević ◽  
Audrius Menkis

Pinus heldreichii is a high-altitude coniferous tree species naturaly occurring in small and disjuncted populations in the Balkans and southern Italy. The aim of this study was to assess diversity and composition of fungal communities in living needles of P. heldreichii specifically focusing on fungal pathogens. Sampling was carried out at six different sites in Montenegro, where 2-4 year-old living needles of P. heldreichii were collected. Following DNA isolation, it was amplified using ITS2 rDNA as a marker and subjected to high-throughput sequencing. Sequencing resulted in 31,831 high quality reads, which after assembly were found to represent 375 fungal taxa. The detected fungi were 295 (78.7%) Ascomycota, 79 (21.0%) Basidiomycota and 1 (0.2%) Mortierellomycotina. The most common fungi were Lophodermium pinastri (12.5% of all high-quality sequences), L. conigenum (10.9%), Sydowia polyspora (8.8%), Cyclaneusma niveum (5.5%), Unidentified sp. 2814_1 (5.4%) and Phaeosphaeria punctiformis (4.4%). The community composition varied among different sites, but in this respect two sites at higher altitudes (harsh growing conditions) were separated from three sites at lower altitudes (milder growing conditions), suggesting that environmental conditions were among major determinants of fungal communities associated with needles of P. heldreichii. Trees on one study site were attacked by bark beetles, leading to discolouration and frequent dieback of needles, thereby strongly affecting the fungal community structure. Among all functional groups of fungi, pathogens appeared to be an important component of fungal communities in the phyllosphere of P. heldreichii, especially in those trees under strong abiotic and biotic stress.


2021 ◽  
Vol 7 (3) ◽  
pp. 194
Author(s):  
Carmen Gómez-Lama Cabanás ◽  
Antonio J. Fernández-González ◽  
Martina Cardoni ◽  
Antonio Valverde-Corredor ◽  
Javier López-Cepero ◽  
...  

This study aimed to disentangle the structure, composition, and co-occurrence relationships of the banana (cv. Dwarf Cavendish) root endophytome comparing two phenological plant stages: mother plants and suckers. Moreover, a collection of culturable root endophytes (>1000) was also generated from Canary Islands. In vitro antagonism assays against Fusarium oxysporum f.sp. cubense (Foc) races STR4 and TR4 enabled the identification and characterization of potential biocontrol agents (BCA). Eventually, three of them were selected and evaluated against Fusarium wilt of banana (FWB) together with the well-known BCA Pseudomonas simiae PICF7 under controlled conditions. Culturable and non-culturable (high-throughput sequencing) approaches provided concordant information and showed low microbial diversity within the banana root endosphere. Pseudomonas appeared as the dominant genus and seemed to play an important role in the banana root endophytic microbiome according to co-occurrence networks. Fungal communities were dominated by the genera Ophioceras, Cyphellophora, Plecosphaerella, and Fusarium. Overall, significant differences were found between mother plants and suckers, suggesting that the phenological stage determines the recruitment and organization of the endophytic microbiome. While selected native banana endophytes showed clear antagonism against Foc strains, their biocontrol performance against FWB did not improve the outcome observed for a non-indigenous reference BCA (strain PICF7).


2021 ◽  
Vol 9 (3) ◽  
pp. 659
Author(s):  
Elias Asimakis ◽  
Panagiota Stathopoulou ◽  
Apostolis Sapounas ◽  
Kanjana Khaeso ◽  
Costas Batargias ◽  
...  

Various factors, including the insect host, diet, and surrounding ecosystem can shape the structure of the bacterial communities of insects. We have employed next generation, high-throughput sequencing of the 16S rRNA to characterize the bacteriome of wild Zeugodacus (Bactrocera) cucurbitae (Coquillett) flies from three regions of Bangladesh. The tested populations developed distinct bacterial communities with differences in bacterial composition, suggesting that geography has an impact on the fly bacteriome. The dominant bacteria belonged to the families Enterobacteriaceae, Dysgomonadaceae and Orbaceae, with the genera Dysgonomonas, Orbus and Citrobacter showing the highest relative abundance across populations. Network analysis indicated variable interactions between operational taxonomic units (OTUs), with cases of mutual exclusion and copresence. Certain bacterial genera with high relative abundance were also characterized by a high degree of interactions. Interestingly, genera with a low relative abundance like Shimwellia, Gilliamella, and Chishuiella were among those that showed abundant interactions, suggesting that they are also important components of the bacterial community. Such knowledge could help us identify ideal wild populations for domestication in the context of the sterile insect technique or similar biotechnological methods. Further characterization of this bacterial diversity with transcriptomic and metabolic approaches, could also reveal their specific role in Z. cucurbitae physiology.


Sign in / Sign up

Export Citation Format

Share Document