Cellular properties of extensor carpi radialis brevis and trapezius muscles in healthy males and females

2015 ◽  
Vol 93 (11) ◽  
pp. 953-966
Author(s):  
Howard J. Green ◽  
Don Ranney ◽  
Margaret Burnett ◽  
Sobia Iqbal ◽  
Natasha Kyle ◽  
...  

In this study, we sought to determine whether differences in cellular properties associated with energy homeostasis could explain the higher incidence of work-related myalgia in trapezius (TRAP) compared with extensor carpi radialis brevis (ECRB). Tissue samples were obtained from the ECRB (n = 19) and TRAP (n = 17) of healthy males and females (age 27.9 ± 2.2 and 28.1 ± 1.5 years, respectively; mean ± SE) and analyzed for properties involved in both ATP supply and utilization. The concentration of ATP and the maximal activities of creatine phosphokinase, phosphorylase, and phosphofructokinase were higher (P < 0.05) in ECRB than TRAP. Succinic dehydrogenase, citrate synthase, and cytochrome c oxidase were not different between muscles. The ECRB also displayed a higher concentration of Na+–K+-ATPase and greater sarcoplasmic reticulum Ca2+ release and uptake. No differences existed between muscles for either monocarboxylate transporters or glucose transporters. It is concluded that the potentials for high-energy phosphate transfer, glycogenolysis, glycolysis, and excitation–contraction coupling are higher in ECRB than TRAP. Histochemical measurements indicated that the muscle differences are, in part, related to differing amounts of type II tissue. Depending on the task demands, the TRAP may experience a greater metabolic and excitation–contraction coupling strain than the ECRB given the differences observed.

2009 ◽  
Vol 297 (5) ◽  
pp. R1383-R1391 ◽  
Author(s):  
H. J. Green ◽  
E. Bombardier ◽  
M. E. Burnett ◽  
I. C. Smith ◽  
S. M. Tupling ◽  
...  

In this study, we investigated the hypothesis that the metabolic adaptations observed during steady-state exercise soon after the onset of training would be displayed during the nonsteady period of moderate exercise and would occur in the absence of increases in peak aerobic power (V̇o2peak) and in muscle oxidative potential. Nine untrained males [age = 20.8 ± 0.70 (SE) yr] performed a cycle task at 62% V̇o2peak before (Pre-T) and after (Post-T) training for 2 h/day for 5 days at task intensity. Tissue samples extracted from the vastus lateralis at 0 min (before exercise) and at 10, 60, and 180 s of exercise, indicated that at Pre-T, reductions ( P < 0.05) in phosphocreatine and increases ( P < 0.05) in creatine, inorganic phosphate, calculated free ADP, and free AMP occurred at 60 and 180 s but not at 10 s. At Post-T, the concentrations of all metabolites were blunted ( P < 0.05) at 60 s. Training also reduced ( P < 0.05) the increase in lactate and the lactate-to-pyruvate ratio observed during exercise at Pre-T. These adaptations occurred in the absence of change in V̇o2peak (47.8 ± 1.7 vs. 49.2 ± 1.7 ml·kg−1·min−1) and in the activities (mol·kg protein−1·h−1) of succinic dehydrogenase (3.48 ± 0.21 vs. 3.77 ± 0.35) and citrate synthase (7.48 ± 0.61 vs. 8.52 ± 0.65) but not cytochrome oxidase (70.8 ± 5.1 vs. 79.6 ± 6.6 U/g protein; P < 0.05). It is concluded that the tighter metabolic control observed following short-term training is initially expressed during the nonsteady state, probably as a result of increases in oxidative phosphorylation that is not dependent on changes in V̇o2peak while the role of oxidative potential remains uncertain.


2014 ◽  
Vol 92 (4) ◽  
pp. 315-323 ◽  
Author(s):  
Howard J. Green ◽  
Don Ranney ◽  
Margaret Burnett ◽  
Patti Galvin ◽  
Natasha Kyle ◽  
...  

To investigate fibre-type abnormalities in women with work-related myalgia (WRM), tissue samples were extracted from their trapezius (TRAP) and the extensor carpi radialis brevis (ECRB) muscles and compared with healthy controls (CON). For the ECRB samples (CON, n = 6; WRM, n = 11), no differences (P > 0.05) were found between groups for any of the properties examined, namely fibre-type (I, IIA, IIX, IIAX) distribution, cross-sectional fibre area, capillary counts (CC), capillary to fibre area ratio, and succinic dehydrogenase activity. For the TRAP samples (CON, n = 6; WRM, n = 8), the only difference (P < 0.05) observed between groups was for CC (CON > WRM), which was not statistically significant (P > 0.05) when age was used a covariant. A comparison of the properties of these 2 muscles in the CON group indicated a higher (P < 0.05) and lower (P < 0.05) percentage of type I and type IIA fibres, respectively, in the TRAP as well as higher (P < 0.05) CC, which was not specific to fibre type. These preliminary results suggest that the properties employed to characterize fibre types do not differentiate CON from WRM for either the TRAP or ECRB. As a consequence, the role of inherent fibre-type differences between these muscles in the pathogenesis of WRM remains uncertain.


2014 ◽  
Vol 92 (6) ◽  
pp. 498-506 ◽  
Author(s):  
Howard J. Green ◽  
Don Ranney ◽  
Margaret Burnett ◽  
Patti Galvin ◽  
Natasha Kyle ◽  
...  

We investigated the potential role of selected excitation–contraction coupling processes in females with work-related myalgia (WRM) by comparing WRM with healthy controls (CON) using tissue from extensor carpi radialis brevis (ECRB) and trapezius (TRAP) muscles. For the ECRB, age (mean ± SE) was 29.6 ± 3.5 years for CON (n = 9) and 39.2 ± 2.8 years for WRM (n = 13), while for the TRAP, the values were 26.0 ± 2.1 years for CON (n = 7) and 44.6 ± 2.9 years for WRM (n = 11). For the sarcoplasmic reticulum (SR) of the ECRB, WRM displayed concentrations (nmol·(mg protein)−1·min−1) that were lower (P < 0.05) for Total (202 ± 4.4 vs 178 ± 7.1), Basal (34 ± 1.6 vs 30.1 ± 1.3), and maximal Ca2+-ATPase activity (Vmax, 168 ± 4.9 vs 149 ± 6.3), and Ca2+-uptake (5.06 ± 0.31 vs 4.13 ± 0.29), but not SERCA1a and SERCA2a isoforms, by comparison with CON. When age was incorporated as a co-variant, Total, Basal, and Ca2+-uptake remained different from CON (P < 0.05), but not Vmax (P = 0.13). For TRAP, none of the ATPase properties differed between groups (P > 0.05) either before or following adjustment for age. No differences (P > 0.05) were observed between the groups for Ca2+-release in the SR for either TRAP or ECRB. Similarly, no deficiencies, regardless of muscle, were noted for either the Na+–K+-ATPase content or the α and β subunit isoform distribution in WRM. This preliminary study provides a basis for further research, with expanded numbers, investigating the hypothesis that abnormalities in SR Ca2+-regulation are involved in the cellular etiology of WRM.


2000 ◽  
Vol 88 (2) ◽  
pp. 634-640 ◽  
Author(s):  
Howard Green ◽  
Brian Roy ◽  
Susan Grant ◽  
Margaret Burnett ◽  
Russ Tupling ◽  
...  

To investigate the hypothesis that acclimatization to altitude would result in a downregulation in muscle Na+-K+-ATPase pump concentration, tissue samples were obtained from the vastus lateralis muscle of six volunteers (5 males and 1 female), ranging in age from 24 to 35 yr, both before and within 3 days after a 21-day expedition to the summit of Mount Denali, Alaska (6,194 m). Na+-K+-ATPase, measured by the [3H]ouabain-binding technique, decreased by 13.8% [348 ± 12 vs. 300 ± 7.6 (SE) pmol/g wet wt; P< 0.05]. No changes were found in the maximal activities (mol ⋅ kg protein− 1 ⋅ h− 1) of the mitochondrial enzymes, succinic dehydrogenase (3.63 ± 0.20 vs. 3.25 ± 0.23), citrate synthase (4.76 ± 0.44 vs. 4.94 ± 0.44), and malate dehydrogenase (12.6 ± 1.8 vs. 12.7 ± 1.2). Similarly, the expedition had no effect on any of the histochemical properties examined, namely fiber-type distribution (types I, IIA, IIB, IC, IIC, IIAB), area, capillarization, and succinic dehydrogenase activity. Peak aerobic power (52.3 ± 2.1 vs. 50.6 ± 1.9 ml ⋅ kg− 1 ⋅ min− 1) and body mass (76.9 ± 3.7 vs. 75.5 ± 2.9 kg) were also unaffected. We concluded that acclimatization to altitude results in a downregulation in muscle Na+-K+-ATPase pump concentration, which occurs without changes in oxidative potential and other fiber-type histochemical properties.


1999 ◽  
Vol 87 (1) ◽  
pp. 152-160 ◽  
Author(s):  
Jerónimo Delgado ◽  
Ana Saborido ◽  
María Morán ◽  
Alicia Megías

The purpose of this investigation was to examine the effects of chronic and acute exercise on the main components involved in excitation-contraction coupling and relaxation in rat heart. Sixty male Wistar rats were divided into a sedentary (S) and three 12-wk treadmill-trained groups (T-1, moderate intensity; T-2, high intensity; T-3, interval running). After 12-wk, 15 rats from the S group and 15 rats from the T-2 group were subjected to a single treadmill-exercise session until exhaustion before being killed at 0, 24, or 48 h (acute exercise). The remaining animals were killed 48 h after the last standard exercise session (chronic exercise). The efficacy of the training programs was confirmed by an increase in treadmill endurance time and in skeletal muscle citrate synthase activity. None of the exercise programs modified heart weight or cardiac oxidative capacity. [3H]PN200–110 and [3H]ryanodine binding to cardiac homogenates indicated that the density of L-type and sarcoplasmic reticulum (SR) Ca2+channels was the same in S and trained rats. The SR Ca2+-ATPase activity was also unmodified. Finally, the activities of the ectoenzymes Mg2+-ATPase and 5′-nucleotidase, which are involved in degradation of extracellular nucleotides, were not affected by either of the running programs. After the acute exercise session, no changes were detected in either of the tested parameters in heart homogenates of S and T-2 animals. We conclude that neither treadmill-exercise training for 12 wk nor exhaustive exercise alters the density of Ca2+ channels involved in excitation-contraction coupling or the SR Ca2+-ATPase and the ectonucleotidase activities in rat heart.


Sign in / Sign up

Export Citation Format

Share Document