scholarly journals Inter-row stubble seeding and plant growth regulators to improve field pea standability and production

2019 ◽  
Vol 99 (2) ◽  
pp. 184-198
Author(s):  
S.M. Strydhorst ◽  
R.C. Yang ◽  
K.S. Gill ◽  
R. Bowness

Field pea (Pisum sativum) is an important economic and rotational crop in Alberta, Canada; however, standability problems are a major barrier to increasing seeded area in highly productive growing environments. Field experiments were conducted from 2015 to 2017 at three sites in the central and Peace regions of Alberta to determine if (i) pea standability and production can be improved using inter-row seeding into untilled standing wheat stubble; (ii) pea standability and production can be improved using chlormequat chloride (CCC), trinexapac-ethyl (TXP), or ethephon (ETH) plant growth regulators (PGRs); and (iii) PGR responses are cultivar-specific. Depending on the site–year, there were 16–17 inter-row seeding, PGR, and cultivar treatment combinations arranged in a randomized complete block design. Relative to the no-stubble control, inter-row seeding into 20- or 30-cm-tall, untilled wheat stubble significantly improved standability between 6% and 23% under conditions when lodging occurred. It also reduced days to maturity and increased 1000-seed weight, but had no effect on yield. Individual PGR treatments (CCC, TXP, and ETH) generally had small and inconsistent impacts on agronomic traits, yield, and seed quality. In dry conditions, PGRs reduced yield. CDC Meadow was slightly more responsive to PGR treatments than AAC Lacombe, indicating responses may be cultivar-specific. Because of the small and inconsistent responses, PGRs have little value as an agronomic tool in field pea. Alternatively, inter-row seeding into standing wheat stubble is a low-cost, easy to implement practice for improving field pea standability.

HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 651-653 ◽  
Author(s):  
Mélanie Leclerc ◽  
Claude D. Caldwell ◽  
Rajasekaran R. Lada ◽  
Jeffrey Norrie

Field experiments were conducted in 2002 and 2003 to evaluate the effects of selected plant growth regulators on propagule production in Hemerocallis `Happy Returns' and Hosta `Gold Standard'. Benzyladenine (BA), chlormequat chloride (Cycocel), ethephon (Ethrel), prohexadione calcium (Apogee), and an experimental preparation of commercial seaweed extract (Acadian Seaplants Limited Liquid Seaweed Concentrate) amended with BA and IBA were tested at two times of application and three rates of application. Results with Hemerocallis showed that the application of the seaweed/PGR mixture at 3000 mg·L–1, Cycocel at 3000 mg·L–1 or BA at 2500 mg·L–1 applied at flowering, increased the number of plants producing two divisions compared to control plants. In Hosta, no increase in divisions under any treatments was observed.


2021 ◽  
Vol 22 (4) ◽  
pp. 1847
Author(s):  
Kristina Vlahoviček-Kahlina ◽  
Slaven Jurić ◽  
Marijan Marijan ◽  
Botagoz Mutaliyeva ◽  
Svetlana V. Khalus ◽  
...  

Novel plant growth regulators (PGRs) based on the derivatives of dehydroamino acids 2,3-dehydroaspartic acid dimethyl ester (PGR1), Z-isomer of the potassium salt of 2-amino-3-methoxycarbonylacrylic acid (PGR2) and 1-methyl-3-methylamino-maleimide (PGR3) have been synthesized and their growth-regulating properties investigated. Laboratory testing revealed their plant growth-regulating activity. PGR1 showing the most stimulating activity on all laboratory tested cultures were used in field experiments. Results showed that PGR1 is a highly effective environmentally friendly plant growth regulator with effects on different crops. Biopolymeric microcapsule formulations (chitosan/alginate microcapsule loaded with PGR) suitable for application in agriculture were prepared and characterized. Physicochemical properties and release profiles of PGRs from microcapsule formulations depend on the molecular interactions between microcapsule constituents including mainly electrostatic interactions and hydrogen bonds. The differences in the microcapsule formulations structure did not affect the mechanism of PGRs release which was identified as diffusion through microcapsules. The obtained results opened a perspective for the future use of microcapsule formulations as new promising agroformulations with a sustained and target release for plant growth regulation.


2022 ◽  
Vol 2 (1) ◽  
pp. 10-18
Author(s):  
Md Ehsanullah ◽  
Ahasan Ullah Khan ◽  
Md Kamruzzam ◽  
Sarah Tasnim

A field study was conceded to assess the effect of plant growth regulators on growth and quality flower production of chrysanthemum at Horticulture Research Centre (HRC), Gazipur, Bangladesh. The experiment was laid out in Randomized Complete Block Design (RCBD) with ten (10) treatments and three replications. The treatments of plant growth regulators concentration were T1-50 ppm GA3, T2-100 ppm GA3, T3-150 ppm GA3, T4-400 ppm CCC, T5-600 ppm CCC, T6-800 ppm CCC, T7-250 ppm MH, T8-500 ppm MH, T9-750 ppm MH and, T10-Control. The maximum spreading of plant (27.0 cm) was observed when plants were treated with GA3 @ 150 ppm where the minimum plant spread (16.8 cm) was recorded in plants treated with CCC @ 800 ppm. The higher number of suckers (33) per pot was produced when pots were treated with GA3 @ 150 ppm whereas, application of CCC at three different concentrations produced lower number of suckers.  The highest number of flower (40) was recorded with 150 ppm GA3, where minimum number of flowers (25) per pot in 800 ppm CCC. The plants sprayed with 50 ppm GA3 took 48 days to flower initiation, whereas, it took 70 days with 750 ppm MH. the highest plants recorded (7.40 cm) with 800 ppm CCC, whereas, lowest size (6.50 cm) was obtained with the application of 500 ppm MH. The maximum vase life of flowers was recorded for the treatment 800 ppm CCC (15 days), which was at par with 13 days vase life obtained by spraying 600 ppm CCC. Therefore, it is concluded that the GA3 acted as growth promoter and the CCC acted as growth retardants on yield and quality of chrysanthemum.


2018 ◽  
Vol 29 (2) ◽  
pp. 91-98
Author(s):  
MHA Rashid

Gladiolus is an excellent cut flower grown throughout the world for its spikes with florets of massive form, brilliant colours, attractive shapes, varying size and long shelf life. However, major constraint for gladiolus cultivation is the corm dormancy. Plant growth regulators (PGRs) play an important role in breaking dormancy and promote more number of quality corm and cormel productions in gladiolus. Therefore, an experiment was conducted to study the influence of corm size and plant growth regulators on corm and cormel production of gladiolus during the period from October 2017 to April 2018 at the Landscaping section of the Department of Horticulture, Bangladesh Agricultural University, Mymensingh. The two-factor experiment included two corm sizes viz., 3-4 cm and 4.1-5 cm, and two PGRs viz., GA3 @ 250, 500 and 750 ppm; and NAA @ 100, 200 and 300 ppm along with tap water as control. The experiment was laid out in a randomised complete block design (RCBD) with three replications. The results revealed that the corm size and PGRs at different concentrations significantly influenced the corm and cormel producing attributes of gladiolus. Maximum number of corms and cormels per plant, maximum weight of single corm, maximum weight of corms and cormels per plant, biggest size of single corm, highest yield of corms and cormels per hectare were recorded from 4.1-5 cm sized corms and GA3 @ 500 ppm, compared to rest of the treatments. It was observed that combined treatments had significant influence on all the parameters studied. The treatment combination of 4.1-5 cm sized corms and GA3 @ 500 ppm was found to be best in terms of corm and cormel production of gladiolus.Progressive Agriculture 29 (2): 91-98, 2018


2011 ◽  
Vol 94 (6) ◽  
pp. 1715-1721 ◽  
Author(s):  
Dasharath P Oulkar ◽  
Kaushik Banerjee ◽  
Sunil Kulkarni

Abstract A selective and sensitive LC-MS/MS method is presented for simultaneous determination of 12 plant growth regulators, viz., indol-3-acetic acid, indol-3-butyric acid, kinetin, zeatin, 6-benzyl aminopurine, gibberellic acid, abscisic acid, chlormequat chloride, forchlorfenuron, paclobutrazole, daminozide, and 2,4-dichlorophenoxy acetic acid, in bud sprouts and grape berries. The sample preparation method involved extraction of homogenized sample (5 g) with 40 mL methanol (80%), and final determination was by LC-MS/MS in the multiple reaction monitoring (MRM) mode with time segmentation for quantification supported by complementary analysis by quadrupole-time of flight (Q-TOF) MS with targeted high-resolution MS/MS scanning for confirmatory identification based on accurate mass measurements. The recovery of the test compounds ranged within 90–107% with precision RSD less than 5% (n = 6). The method could be successfully applied in analyzing incurred residue samples, and the strength of accurate mass analysis could be utilized in identifying the compounds in cases where the qualifier MRM ions were absent or at an S/N less than 3:1 due to low concentrations.


2015 ◽  
Vol 25 (3) ◽  
pp. 397-404 ◽  
Author(s):  
Marco Volterrani ◽  
Nicola Grossi ◽  
Monica Gaetani ◽  
Lisa Caturegli ◽  
Aimila-Eleni Nikolopoulou ◽  
...  

Vegetatively propagated warm-season turfgrasses are established with methods that rely on large quantities of propagation material and subsequent plant growth support. The precision seeding adopted for some seed propagated crops controls the depth and spacing at which seeds are placed in the soil. Sprigs that are reduced in length could potentially be suitable for existing machinery, and precision planting could enhance the efficiency of use of the propagation material. The aim of the present study was to carry out a preliminary screening on products known to act as plant growth regulators to explore their potential use for controlling stolon development and elongation of ‘Patriot’ hybrid bermudagrass (Cynodon dactylon × C. transvaalensis) grown in pots for propagation purposes. Trinexapac-ethyl (TE), chlormequat chloride (CM), paclobutrazol (PB), propiconazole (PPC), diquat (DQ), flazasulfuron (FS), glyphosate (GP), ethephon (EP), and gibberellic acid (GA) were applied to pot-grown ‘Patriot’ hybrid bermudagrass turf in eight different application rates, ranging for each product from the minimum expected effective rate to a potentially harmful rate. Of the tested treatments, TE applied at 2.0 kg·ha−1 and PB applied at 1.0 kg·ha−1 reduced stolon and internode length without causing a reduction in the stolon number or turf quality. PPC was also effective in reducing stolon length, but the effect on internode length was not statistically significant. Stolon length was unaffected by CM, while DQ and GP induced stolon elongation. FS, EP, and GA affected stolon length without a consistent relation between stolon length and application rate. The chemical suppression of stolon elongation in pot-grown ‘Patriot’ hybrid bermudagrass can contribute to controlling sprig size for use with precision seeding machinery.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 443C-443
Author(s):  
J. Pablo Morales-Payan

Field studies were conducted in the Dominican Republic to determine the effect of several plant growth regulators on the yield of `Jira' eggplant. Treatments consisted of aqueous solutions of folcysteine (25, 50, 75 ppm), giberellic acid 3 (10, 20, 30 ppm), kinetine (25, 50, 75 ppm), naphthalenacetic acid (NAA) (25, 50, 75 ppm), 2,3,4-dichloro-phenoxy-triethyl-amine hydrochloride (DCPTA) (25, 50, 75 ppm), triacontanol (5, 10, 15 ppm), ethanol (5, 10, 15%), and chlormequat (50, 100, 150 ppm) sprayed at early flowering, directed to the crop upper leaves and flowers. A control treatment (no plant growth regulators applied) was also included. A randomized complete-block design with four replications was utilized. Experimental units were two rows of 10 plants at a 1.0 × 0.4-m distancing. Eggplant fruit set and yield were determined after 10 harvests performed at 3-day intervals. Analysis of variance and mean comparison tests were performed on the resulting data. `Jira' eggplant fruit set and yield was significantly improved by folcysteine, giberellic acid 3, and NAA, but not by kinetine, DCPTA, ethanol, triacontanol, or chlormequat. Eggplant yield increased as folcysteine rate increased from 0 to 50 ppm, but no further yield increase was obtained when increasing the rate from 50 to 75 ppm. Similarly, eggplant yield significantly increased as gibberellic acid increased from 0 to 20 ppm, but not when rates increased from 20 to 30 ppm. With NAA, eggplant fruit set and yield significantly increased above that of control plants when 25 ppm was applied, with no significant yield increase at higher rates. Results indicate that the yield of `Jira' eggplants could be enhanced by the treatments with either folcysteine, NAA, or gibberellic acid hereby described.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 983E-984
Author(s):  
Jennifer K. Boldt ◽  
James E. Barrett

A daminozide plus chlormequat chloride tank mix spray was applied to six Coleus cultivars or breeding lines at different times during propagation. For UF 03-8-10 and `Coco Loco', plants sprayed on day 7 or day 10 were shorter than control plants at transplant, but plants sprayed on day 13 were not. Other cultivars did not respond to single applications. Five of the six cultivars responded to application on days 7 and 13. Plants of UF 03-8-3 and `Coco Loco' were significantly shorter than control plants at transplant. Plants of UF 03-8-10, UF 03-6-1, and UF 03-17-8 were shorter than control plants at 3 weeks after transplant. `Hurricane Louise' did not respond to the tank mix. A second study found a cultivar specific response to three chemical treatments applied as a spray on day 10 of propagation. At transplant, UF 03-8-10, UF 03-8-3, UF 03-6-1, and `Coco Loco' plants sprayed with the tank mix at 2500 plus 1500 mg·L-1, respectively, were significantly shorter than the control plants. A uniconazole spray at 2 mg·L-1 reduced elongation in UF 03-8-10, UF 03-8-3, and UF 03-6-1, compared to control plants. Ethephon at 250 mg·L-1 reduced elongation in UF 03-8-10, UF 03-8-3, and `Coco Loco' plants. None of the chemical sprays reduced elongation in `Hurricane Louise' at the concentrations applied. Ethephon increased axillary branching in all cultivars, and induced lower leaf abscission in UF 03-17-8 and `Hurricane Louise'; leaf malformation in UF 03-6-1 and `Coco Loco'; and color alteration in UF 03-6-1, UF 03-8-3, and `Coco Loco'.


2022 ◽  
Vol 951 (1) ◽  
pp. 012065
Author(s):  
K A Tanjung ◽  
L A M Siregar ◽  
R I M Damanik

Abstract This study aims to determine the effect of the application of plant growth regulators and osmoconditioning treatment to improve the germination of true shallot seeds. This research was conducted in Asam Kumbang, Medan Selayang, Medan, Indonesia. The research method was a Randomize Block Design with 2 factors, the first factor is Plant Growth Regulators (Z) with 6 levels, namely Z0 (Without PGRs Application), Z1 (Gibberellin 500 ppm), Z2 (Putrescine 15 ppm), Z3 (Putrescine 20 ppm), Z4 (Putrescine 15 ppm + Gibberellin 500 ppm), Z5 (Putrescine 20 ppm + Gibberellin 500 ppm). The second factor was the osmoconditioning treatment with Polyethylene Glycol (PEG) 6000 (O) with 4 levels, namely O0 (Without Osmoconditioning Treatment), O1 (PEG 6000 3%), O2 (PEG 6000 4%), O3 (PEG 6000 5%). Parameters observed were germination rate, germination rate index, percentage of germination, germination ability, simultaneous growth of seeds, seedling length, root length, seedling dry weight, and catalase activity test. The results of this study were: application of plant growth regulators could improve true shallot seed germination, indicated by the observed values of all parameters which were significantly different from those of the control (without PGRs application). The plant growth regulator that produced the best increase in germination was Gibberellins 500 ppm, although the difference in effect with other PGRs was not significantly different. Meanwhile, the osmoconditioning treatment with PEG 6000 was also able to improve the germination of true shallot seeds as indicated by an increase in most of the observed parameters, but in the root length parameter it was seen that the tendency of PEG 6000 3% always gave the highest value but gave the lowest value for this parameter. The best concentration of PEG 6000 in the osmoconditioning treatment to improve true shallot seed germination was 3%.


2021 ◽  
pp. 1-3
Author(s):  
S. Patil Manasi ◽  
V. Waghmode Ahilya ◽  
Chirag Narayankar ◽  
D. K. Gaikwad

Simarouba glauca is a medicinally important oil yielding plant. It is a rainfed wasteland evergreen edible oil tree. Presowing soaked seeds of Simarouba glauca in various Plant Growth Regulators (PGRs) are analyzed to estimate their fatty acid composition. The fatty acids extraction was done using petroleum ether and fatty acid methyl esters (FAMEs) were analyzed by Gas Chromatography with Flame Ionization Detector (GC-FID). Due to the application of growth regulators stearic acid, lingoceric acid and linolenic acid enhances noticeably, while, total saturated fatty acids are augmented due to cysteine, Salicylic Acid (SA) and methionine treatments and monosaturated fatty acids elevated due to the application of 6-Benzylaminopurine (6-BA) whereas polyunsaturated fatty acids enhanced in response to Gibberellic Acid (GA) and Chlormequat chloride (CCC). The PGR induced changes in fatty acid composition predominantly in polyunsaturated fatty acids may certainly recover the oil quality of S. glauca seeds.


Sign in / Sign up

Export Citation Format

Share Document