THE THERMAL DECOMPOSITION OF STYRENE–BUTADIENE POPCORN POLYMER

1950 ◽  
Vol 28b (1) ◽  
pp. 5-16
Author(s):  
C. A. Winkler ◽  
J. Halpern

At temperatures of the order of 250 °C., popcorn polymer undergoes decomposition to soluble polymer. The reaction is catalyzed by peroxides present in the popcorn when the latter is formed. These peroxides may be removed by extracting the polymer with benzene. The kinetics of both the catalyzed and purely thermal solubilization reactions were investigated. The rates of both reactions are first order, the catalyzed degradation having a higher activation energy and a higher frequency factor. The rate of the thermal reaction decreases and its activation energy increases with increasing butadiene content of the polymer. A linear relation between the activation energy and the log of the frequency factor, for the decomposition of popcorn polymers of different butadiene contents, was observed. The results indicate that the rate of solubilization is determined by the activation energy of the bond scission process, and is independent of the degree of cross-linking of the polymer.

2017 ◽  
Vol 23 (4) ◽  
pp. 495-506 ◽  
Author(s):  
Larissa Falleiros ◽  
Bruna Cabral ◽  
Janaína Fischer ◽  
Carla Guidini ◽  
Vicelma Cardoso ◽  
...  

The immobilization and stabilization of Aspergillus oryzae ?-galactosidase on Duolite??A568 was achieved using a combination of physical adsorption, incubation step in buffer at pH 9.0 and cross-linking with glutaraldehyde and in this sequence promoted a 44% increase in enzymatic activity as compared with the biocatalyst obtained after a two-step immobilization process (adsorption and cross-linking). The stability of the biocatalyst obtained by three-step immobilization process (adsorption, incubation in buffer at pH 9.0 and cross-linking) was higher than that obtained by two-steps (adsorption and cross-linking) and for free enzyme in relation to pH, storage and reusability. The immobilized biocatalyst was characterized with respect to thermal stability in the range 55-65 ?C. The kinetics of thermal deactivation was well described by the first-order model, which resulted in the immobilized biocatalyst activation energy of thermal deactivation of 71.03 kcal/mol and 5.48 h half-life at 55.0 ?C.


1987 ◽  
Vol 52 (6) ◽  
pp. 1527-1544 ◽  
Author(s):  
Ulrika Králíková ◽  
Martin Bajus ◽  
Jozef Baxa

The kinetics of pyrolysis of methylcyclohexane was investigated from the viewpoint of coke formation in a steel tubular reactor (S/V = 6·65 cm-1) at 0·1 MPa, 700 to 820 °C and residence time 0·01 to 0·24 s. Decomposition of methylcyclohexane proceeds as a first order reaction with a frequency factor 6·31 . 1015 s-1 and activation energy 251·2 kJ mol-1. The course of secondary reactions associated with the formation of coke is discussed. Investigation of coke formation showed a greater tendency of methylcyclohexane to coking in comparison with heptane. A prominent role plays the course of dehydrogenation of cycloalkane radicals up to aromates, this being reflected by the overall conversion of methylcyclohexane, and, on the other hand the thus formed aromates enter the consecutive reactions leading to coke.


The kinetics of the thermal decomposition of benzylamine were studied by a flow method using toluene as a carrier gas. The decomposition produced NH 3 and dibenzyl in a molar ratio of 1:1, and small quantities of permanent gases consisting mainly of H 2 . Over a temperature range of 150° (650 to 800° C) the process was found to be a homogeneous gas reaction, following first-order kinetics, the rate constant being expressed by k = 6 x 10 12 exp (59,000/ RT ) sec. -1 . It was concluded, therefore, that the mechanism of the decomposition could be represented by the following equations: C 6 H 5 . CH 2 . NH 2 → C 6 H 5 . CH 2 • + NH 2 •, C 6 H 5 . CH 3 + NH 2 •→ C 6 H 5 . CH 2 • + NH 3 , 2C 6 H 5 . CH 2 •→ dibenzyl, and the experimentally determined activation energy of 59 ± 4 kcal./mole is equal to the dissociation energy of the C-N bond in benzylamine. Using the available thermochemical data we calculated on this basis the heat of formation of the NH 2 radical as 35.5 kcal./mole, in a fair agreement with the result obtained by the study of the pyrolysis of hydrazine. A review of the reactions of the NH 2 radicals is given.


2014 ◽  
Vol 887-888 ◽  
pp. 951-954
Author(s):  
Hong Kai Zhao ◽  
Hong Li Wang

Kinetic parameters are calculated based on the reactive temperature rise curve measured by adiabatic approach at the temperature of 145 to 160 °C with the catalytic system of NaOH and acyl caprolactam End-capped butadiene-acrylonitrile rubber (CHTBN) or styrene-butadiene rubber (CHTBS). The reaction order is first order, the activation energy is between 72.91−73.16 kJ∙mol−1 and the pre-exponential factor is between 3.22×1011− 3.38×1011 mol1−n∙s−1 in the system of CHTBN/NaOH. While in CHTBS/NaOH, the reaction order is between 1.23-1.34, the activation energy is between 85.55-86.88 kJ∙mol−1 and the pre-exponential factor is between 4.52×1011−5.0 9×1011 mol1−n∙s−1. The adiabatic reaction kinetic model of caprolactam anion was constructed based on the existing research findings, by which the polymerizing reaction is simulated. The coincidence between the simulation results and the experimental data revealed that the model is reasonable and correct.


1960 ◽  
Vol 38 (8) ◽  
pp. 1261-1270 ◽  
Author(s):  
Margaret H. Back ◽  
A. H. Sehon

The thermal decomposition of phenylacetic acid was investigated by the toluene-carrier technique over the temperature range 587 to 722 °C. The products of the pyrolysis were carbon dioxide, carbon monoxide, hydrogen, methane, dibenzyl, and phenylketene. From the kinetics of the decomposition it was concluded that the reaction[Formula: see text]was a homogeneous, first-order process and that the rate constant of this dissociation step was represented by the expression k = 8 × 1012.e−55,000/RT sec−1. The activation energy of this reaction may be identified with D(C6H5CH2—COOH). The possible reactions of carboxyl radicals are discussed.


1961 ◽  
Vol 39 (6) ◽  
pp. 1174-1183 ◽  
Author(s):  
G. A. Dean

The 'pervanadium complex' is investigated in a general manner. The kinetics of its thermal decomposition in acid solution are shown to be first order with respect to pervanadium, the apparent activation energy is 26.5 ± 1.0 kcal/mole, and possible mechanisms are suggested. The effect of various acids upon the nature of the decomposition products is determined: almost quantitative yields of vanadium (V) or vanadium (IV) are obtained in very dilute or concentrated acid, respectively. Spectrophotometric studies indicate that in acid solution two separate complexes exist: a red (1:1) cationic complex and a yellow (1:2) anionic complex. The stoichiometry of the equilibrium between the two complexes in solutions of sulphuric acid is investigated by a method of 'discrete variations'. The equilibrium could be described by[Formula: see text]where Kr/y = 2.2 ± 0.2 at 22 °C. The anion is shown to play an important part in determining the nature of the pervanadium complex.


The pressure-time curves for the decomposition of ethane when fully inhibited by nitric oxide have initially a point of inflexion. The initial rates are proportional to the first power of the pressure at higher pressures, and to the 3/2 power at lower pressures; the rates at the inflexion point are proportional to the pressure to a power which is slightly greater than unity. The acti­vation energy corresponding to the initial rates in the first-order region was found to be 77∙5 kcal/mole, and the frequency factor 3∙12 × 10 15 s -1 . The reaction was slightly inhibited by increasing the surface: volume ratio, and the induction period disappeared on addition of ethylene. The facts are shown to be consistent with a mechanism in which initiation occurs by the reaction NO + C 2 H 6 → C 2 H 5 + HNO, which is estimated to have an activation energy of 52 kcal. At the beginning of the reaction and at lower pressures termination is con­sidered to occur by H + HNO → H 2 + NO; as ethylene accumulates the ratio [C 2 H 5 ]/[H] increases and the termination step becomes C 2 H 5 + HNO → C 2 H 6 + NO. The mechanism is shown to account for the fact that propylene and other inhibitors give rise to the same limiting rate.


In the study of the thermal decomposition of paraffins the contrast of iso -butane with n -butane and of the branched pentanes with normal pentane has led to the investigation of the isomeric hexanes. The nitric oxide-inhibited reaction of neo -hexane possesses a constant, activation energy at different initial pressures and shows a single transition from second to first order with increasing pressure. The reactions of 2:3-dimethyl-butane, 2-methyl-pentane and 3-methyl-pentane show a double-order transition and a rise in activation energy at lower initial pressures, as previously found for the higher normal paraffins.


1960 ◽  
Vol 33 (2) ◽  
pp. 335-341
Author(s):  
Walter Scheele ◽  
Karl-Heinz Hillmer

Abstract As a complement to earlier investigations, and in order to examine more closely the connection between the chemical kinetics and the changes with vulcanization time of the physical properties in the case of vulcanization reactions, we used thiuram vulcanizations as an example, and concerned ourselves with the dependence of stress values (moduli) at different degrees of elongation and different vulcanization temperatures. We found: 1. Stress values attain a limiting value, dependent on the degree of elongation, but independent of the vulcanization temperature at constant elongation. 2. The rise in stress values with the vulcanization time is characterized by an initial delay, which, however, is practically nonexistent at higher temperatures. 3. The kinetics of the increase in stress values with vulcanization time are both qualitatively and quantitatively in accord with the dependence of the reciprocal equilibrium swelling on the vulcanization time; both processes, after a retardation, go according to the first order law and at the same rate. 4. From the temperature dependence of the rate constants of reciprocal equilibrium swelling, as well as of the increase in stress, an activation energy of 22 kcal/mole can be calculated, in good agreement with the activation energy of dithiocarbamate formation in thiuram vulcanizations.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1003-1007 ◽  
Author(s):  
J. AHN ◽  
B. GAN ◽  
Q. ZHANG ◽  
S. F. YOON ◽  
V. LIGATCHEV ◽  
...  

This study presents the investigation of CVD diamond for the application of an UV TL dosimeter. A 9-μm-thick film used in this study presents a TL glow curve with a well-defined first-order kinetic peak (at about 273 K), which norm ally presents in the glow curve from ionizing radiations, is not observed. By fitting the glow curve to a first-order kinetic model, the trap activation energy E t = 0.95 eV and frequency factor s = 5.6 x 106 s -1 have been resolved.


Sign in / Sign up

Export Citation Format

Share Document