Petrology of a supra-subduction zone ophiolite (Elaz1g, Turkey)

2000 ◽  
Vol 37 (10) ◽  
pp. 1411-1424 ◽  
Author(s):  
Melahat Beyarslan ◽  
A Feyzi Bingöl

The Elaz1g region in eastern Taurus, Turkey, exposes Paleozoic-Tertiary metamorphic, magmatic, and sedimentary units. Contacts between the different units are mostly tectonic, but there are also primary sedimentary, and intrusive contacts. The metamorphic rocks of the Elaz1g region are the Bitlis-Pütürge and Keban-Malatya massifs, which are a single tectonostratigraphic unit that has been tectonically disrupted and fragmented during the Upper Cretaceous. Magmatic rocks in the region are represented by ophiolitic units, magmatic arc products, and young volcanic rocks. The sedimentary units are represented by Upper Cretaceous - Tertiary marine and lacustrine sedimentary rocks. In the study area, the metamorphic units are represented by the Paleozoic Pütürge metamorphic rocks composed of phyllite, slate, mica schist, quartz-muscovite schist, calc-schist, and low-grade metamorphite. The ophiolite that is described in this paper is composed of wehrlite-pyroxenite, gabbro, diabase dykes, and dykes cutting gabbro. These units are cut by the granitic rocks of the Upper Cretaceous Elaz1g magmatic suite. The lithological and geochemical data on the rocks of Kömürhan ophiolite indicate that these rocks were derived from crystallization of an enriched mid-ocean ridge basalt (MORB)-type magma. The Kömürhan ophiolite formed in a supra-subduction spreading zone during the Cretaceous; related to this event is the north-dipping subduction of the southern branch of Neo-Tethys ocean, which began spreading in the Late Triassic. The crust was thickened by the development of an island arc and by the thrusting of the Pütürge metamorphic rocks onto this island arc in response to north-south compression during the Late Cretaceous. The magma formed by partial melting of the subducted slab giving rise to granitic rocks that cut the upper parts of the ophiolite. The ophiolite and the Elaz1g magmatic suite attained their present position after the Middle Eocene.

2020 ◽  
pp. 289-311
Author(s):  
Warwick S. Board ◽  
Duncan F. McLeish ◽  
Charles J. Greig ◽  
Octavia E. Bath ◽  
Joel E. Ashburner ◽  
...  

Abstract The Brucejack intermediate-sulfidation epithermal Au-Ag deposit, located 65 km north of Stewart, BC, forms part of a well-mineralized, structurally controlled, north-south gossanous trend associated with Early Jurassic intrusions straddling the Late Triassic-Early Jurassic Stuhini-Hazelton Group unconformity in the Sulphurets mineral district. Mining of the deposit commenced in mid-2017 after a long history of exploration dating back to the 1880s. Mineralization is hosted in deformed Lower Jurassic island-arc volcanic rocks of the Hazelton Group exposed on the eastern limb of the Cretaceous McTagg anticlinorium. High-grade Au-Ag mineralization was formed from ~184 to 183 Ma in association with a telescoped, multipulsed magmatic-hydrothermal system beneath an active local volcanic center. Precious metal mineralization occurs as coarse aggregates of electrum and silver sulfosalts in steeply dipping, E- to SE-trending quartz-carbonate vein stockwork zones cutting low-grade intrusion-related phyllic alteration. Epithermal vein development is interpreted to have occurred during the waning stages of Early Jurassic sinistral transpression in a compressive arc environment, followed by a limited Cretaceous deformation overprint.


Author(s):  
Gejing Li ◽  
D. R. Peacor ◽  
D. S. Coombs ◽  
Y. Kawachi

Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very finegrained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.Celadonite, having end-member composition KMgFe3+Si4O10(OH)2, and with minor substitution of Fe2+ for Mg and Al for Fe3+ on octahedral sites, is a fine-grained mica widespread in volcanic rocks and volcaniclastic sediments which have undergone low-temperature alteration in the oceanic crust and in burial metamorphic sequences.


Author(s):  
Yin Liu ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Kefa Zhou ◽  
Rongshe Li ◽  
...  

Carboniferous-Triassic magmatism in northern Qiangtang, central Tibet, China, played a key role in the evolution of the Tibetan Plateau yet remains a subject of intense debate. New geochronological and geochemical data from adakitic, Nb-enriched, and normal arc magmatic rocks, integrated with results from previous studies, enable us to determine the Carboniferous-Triassic (312−205 Ma), arc-related, plutonic-volcanic rocks in northern Qiangtang. Spatial-temporal relationships reveal three periods of younging including southward (312−252 Ma), rapid northward (249−237 Ma), and normal northward (234−205 Ma) migrations that correspond to distinct slab geodynamic processes including continentward slab shallowing, rapid trenchward slab rollback, and normal trenchward rollback of the Jinsha Paleotethys rather than the Longmuco-Shuanghu Paleotethys, respectively. Moreover, varying degrees of coexistence of adakites/High-Mg andesites (HMAs)/Nb-enriched basalt-andesites (NEBs) and intraplate basalts in the above-mentioned stages is consistent with the magmatic effects of slab window triggered by ridge subduction, which probably started since the Late Carboniferous and continued into the Late Triassic. The Carboniferous-Triassic multiple magmatic migrations and ridge-subduction scenarios provide new insight into the geodynamic processes of the Jinsha Paleotethys and the growth mechanism of the Tibetan Plateau.


2008 ◽  
Vol 179 (4) ◽  
pp. 411-425 ◽  
Author(s):  
Philippe Monjoie ◽  
Henriette Lapierre ◽  
Artan Tashko ◽  
Georges H. Mascle ◽  
Aline Dechamp ◽  
...  

AbstractTriassic volcanic rocks, stratigraphically associated with pelagic or reef limestones, are tectonically juxtaposed with Mesozoic ophiolites in the Tethyan realm. From the central (Dinarides, Hellenides) and eastern Mediterranean (Antalya, Troodos, Baër Bassit) to the Semail nappes (Oman), they occur either associated to the tectonic sole of the ophiolitic nappes or as a distinct tectonic pile intercalated between the ophiolites and other underthrust units. In the Dinaro-Hellenic belt, the Pelagonian units represent the lower plate, which is underthrust beneath the ophiolites. Middle to Late Triassic volcanic sequences are interpreted as the eastern flank of the Pelagonian platform and are therefore considered as a distal, deep-water part of the Pelagonian margin.The Triassic volcanics from Albania and Othrys are made up of basaltic pillowed and massive flows, associated locally with dolerites and trachytes. New elemental, Nd and Pb isotopic data allow to recognize four types of volcanic suites: (1) intra-oceanic alkaline and tholeiitic basalts, (2) intra-oceanic arc-tholeiites, (3) back-arc basin basalts, (4) calc-alkaline mafic to felsic rocks. Nd and Pb isotopic initial ratios suggest that the within-plate volcanic rocks were derived from an enriched oceanic island basalt type mantle source, devoid of any continental crustal component. The lower εNd value of the trachyte could be due to assimilation of oceanic altered crust or sediments in a shallow magma chamber. Island arc tholeiites and back-arc basin basalts have a similar wide range of εNd. The absence of Nb negative anomalies in the back-arc basin basalts suggests that the basin floored by these basalts was wide and mature. The high Th contents of the island arc tholeiites suggest that the arc volcanoes were located not far away from the continental margin.Albania and Othrys volcanics contrast with the Late Triassic volcanism from eastern Mediterranean (SW Cyprus, SW Turkey), which displays solely features of oceanic within plate suites. The presence of back-arc basin basalts associated with arc-related volcanics in Central Mediterranean indicates that they were close to a still active subduction during the Upper Triassic, while back-arc basins developed, associated with within-plate volcanism, leading to the NeoTethys opening.


2012 ◽  
Vol 524-527 ◽  
pp. 16-23
Author(s):  
Jian Guo Huang ◽  
Run Sheng Han ◽  
Ren Tao ◽  
Zhi Qiang Li

The Late Triassic Tumugou Formation volcanic rocks which belongs to typical island arc volcanic rocks in southern end of Yidun island arc belt is located at the eastern of the Zhongdian ,NW Yunnan, SW China. The volcanic rocks can be divided into three categories:andesitic basalt, andesite, quartz andesite, etc. Through geochemical analysis the major elements, rare earth ele and trace element in volcanic rocks, SiO255.18-57.59×10-2,TiO21.16-1.45×10-2,Na2O+K2O5.11-8.05×10-2.consider it is calc-alkaline- alkaline Series of high-K andesite, volcanic may be controlled by the crystal fractionation of magma.Rb31.50-101×10-6,Ba1310-12300×10-6,Nb/Ta11.4-15.5,REE166.07-240.78×10-6,δEu0.74-1.00,REE distribution patterns show oblique to the HREE side and enrichment in LREE .Eu anomaly is not obvious. It is can see from the relevant figure about trace element, it is very similar in magmatic distribution patterns between volcanic rock and Volcanic-arc rock, indicating that the volcanic in this area may be formed in volcanic-arc environment. From east to west, Magma source depth have regular change with the really thickness of mainland shell. Explain that Tumugou Formation volcanic rock is subduction by Ganzi- Litang Ocean basin from east to west. Hongshan-Ousaila region of eastern edge of Zhongdian is the volcanic island arc system during the passive continental margin into an active continental margin.


1988 ◽  
Vol 25 (3) ◽  
pp. 433-441 ◽  
Author(s):  
Moira Smith

The northwestern Cascades structural province can be interpreted as an accretionary complex comprising fault-bounded blocks of pre-Tertiary metamorphic rocks of diverse age and lithologic type. This paper documents the deformation in a portion of the Chilliwack Group, a unit in this complex. The Chilliwack Group is a thick sequence of volcaniclastic sedimentary rocks, calc-alkaline volcanic rocks, and limestone that is metamorphosed to low-grade blueschist facies. The rocks underwent ductile deformation during a Late Cretaceous orogenic event, producing a subhorizontal foliation and, in appropriate lithologies, subhorizontal stretching lineations that trend N20°W. Finite strain sustained by coarse clastic rocks produced RXZ values averaging 3.5. The deformation at least partially postdates the high pressure metamorphic event, based on the presence of bent and broken high-pressure mineral grains. Although early studies postulated west-vergent thrust imbrication of units in the northwest Cascades, the N20°W direction of apparent elongation in the Chilliwack Group, consistent with the direction of motion along segments of the Shuksan fault elucidated in other more recent studies, may reflect significant, highly oblique components of convergence during formation of the western North Cascades collisional orogen.


1980 ◽  
Vol 17 (6) ◽  
pp. 681-689 ◽  
Author(s):  
George Plafker ◽  
Travis Hudson

A low-grade metamorphic sequence consisting of thick mafic volcanic rocks overlain by calcareous flysch with very minor limestone underlies much of the Chilkat Peninsula. Fossils collected from both units are of Triassic age, probably late Karnian. This sequence appears to be part of the Taku terrane, a linear tectono-stratigraphic belt that now can be traced for almost 700 km through southeastern Alaska to the Kelsall Lake area of British Columbia. The age and gross lithology of the Chilkat Peninsula sequence are comparable to Upper Triassic rocks that characterize the allochthonous tectono-stratigraphic terrane named Wrangellia. This suggests either that the two terranes are related in their history or that they are allochthonous with respect to one another and coincidentally evolved somewhat similar sequences in Late Triassic time.


2021 ◽  
Vol 24 (1) ◽  
pp. 1879-1888
Author(s):  
Tuan Anh Nguyen ◽  
Doan Thi Thuy ◽  
Ngo Tran Thien Quy ◽  
Lan Ching Yin

Introduction: Extrusive volcanic rocks, such as dacite, andesite, basalto-andesite, basalt… of Chau Thoi and Nui Gio hills in Bien Hoa and Binh Phuoc provinces, southern Viet Nam, characterize volcanic island arc rocks. These rock suites formed as the convergent tectonic between the Indochina and Sibumasu geological blocks. Methods: Geochemical data of rock samples collected on the field were examined and analyzed by the Academia Sinica I E S (Institute of Earth Science, Taiwan and processed with a GCD kit (Geochemical Data Toolkit) to ascertain their characteristics and geotectonic setting. Result: Geochemical data both in major elements and trace elements of the Chau Thoi – Nui Gioshow a specific characteristic of a volcanic island arc environment. Discussion: Chau Thoi and Nui Gio rocks are suitable to correlate to the Permian Thailand Loei Phetchabun volcanic belt. However, at the current time, Chau Thoi and Nui Gio rocks have been classified as Deo Bao Loc formation - late Jurassic to early Cretaceous in ages - belong Truong Son magmatic belt. This magmatic belt resulted from the Yanshanian orogeny by the subduction of the Paleo-Pacific oceanic plate beneath the Eurasia (Indochina) continental plate. More studies needed to be performed, specially geochronological data to support the study. Conclusion: Chau Thoi and Nui Gio rock suites characterize volcanic island arc rocks, products of a convergence tectonic between Indochina and Sibumasu blocks. They are remnants of the Thailand Loei Phetchabun volcanic belt, the first time reported in Vietnam.


Clay Minerals ◽  
2015 ◽  
Vol 50 (2) ◽  
pp. 233-248 ◽  
Author(s):  
M.G. Yalcin ◽  
M. Setti ◽  
F. Karakaya ◽  
E. Sacchi ◽  
N. Ilbeyli

AbstractThe aim of this work was to determine the distribution of trace metals in the coastal sediments from the area between Silifke and Alanya (Turkey) and to investigate the sources of these elements, based on their mineralogical, petrographical and geochemical characteristics. Forty three samples were analysed for the determination of their water content, grain-size distribution, petrographical features and their chemical and mineralogical compositions. The samples had low water content, in agreement with the large sand grain size.The mineralogical composition reflects the complex geological setting of the area. The most abundant mineral phases are represented by calcite and dolomite, followed by quartz and mica. Chlorite, feldspar and other carbonates are present in lesser amounts, while kaolinite was detected in one sample only. All samples contain hematite, chromite, magnetite and goethite and one sample contained pyrite. Samples with high concentrations of trace metals, contained fragments of metamorphic rocks with pyroxene, amphibole, quartz and feldspar, whereas carbonates and opaque minerals were subordinate. Compared to literature data, the average concentrations of several elements and trace metals were great enough to be considered as possibly toxic, exceeding the Turkish higher acceptable limits. Geochemical data were treated statistically using Principal Component Analysis (PCA) to obtain evidence of their distribution and to identify any correlations.Based on the distribution of mineral phases, the area investigated was divided into different provinces, each characterized by the abundance of one, or more, tracer minerals. In the westernmost areas, between Alanya and Demirtas, the sediments indicate a provenance from dolomites or marbles. In the area between Demirtas and Gazipasa the provenance was from quartzites, clastic and metamorphic rocks and in the sector between Guney and Anamur, the sediments were derived mostly from low-grade metamorphic rocks, in particular metaschists and metabasites. The sediments in the area between Anamur and Ovacik, display variable source rocks and those between Ovacik and Silifke, were derived from limestones and, subordinately, clastic rocks.The trace-metal concentrations in beach sands appear to be related to the abundance of silicate minerals derived from weathering of the metamorphic-rock outcrops in the inland mountainous regions. In contrast, the trace-metal contents of the limestone- and dolomite-bearing beach sands were small.


Sign in / Sign up

Export Citation Format

Share Document