Systematics and phytogeography of selected Eocene Okanagan Highlands plants

2005 ◽  
Vol 42 (2) ◽  
pp. 205-214 ◽  
Author(s):  
Melanie L DeVore ◽  
Kathleen B Pigg ◽  
Wesley C Wehr

The diverse Early to Middle Eocene Okanagan Highlands floras of south central British Columbia and northeastern Washington reflect a time of rapid evolution and the early radiation of many dicot families that are currently significant elements of temperate floras. Recent studies of the Republic, Washington flora (Klondike Mountain Formation) and related Okanagan floras in British Columbia have documented both the earliest, and sometimes the only, known fossil occurrences of genera. Today many once more widespread taxa are restricted, particularly to Asian and (or) eastern North American refugia. Examples include members of the families Betulaceae (birch, hazelnut), Rosaceae (rose), Hamamelidaceae (witch hazel), and the endemic Asian family Trochodendraceae. Earliest occurrences are noted for Neviusia (Rosaceae), Trochodendron (Trochodendraceae), Corylus and Carpinus (both Betulaceae). The first unequivocal leaf records of Corylopsis and Fothergilla (both Hamamelidaceae), and two new Eocene species of the extinct fruit Palaeocarpinus (Betulaceae) are also recognized. Today, Trochodendron and Corylopsis are restricted to Asia, whereas Neviusia and Fothergilla, genera with close Asian relatives, occur only in North America. Corylus johnsonii from Republic is most similar to the extant Asian species C. heterophylla, C. wangii, and C. ferox. Neviusia leaves from One Mile Creek near Princeton, British Columbia are more similar to N. cliftonii, an endemic from Mount Shasta, California, than to N. alabamensis of southeastern North America. A better documentation of the Okanagan Highlands floras is essential to our understanding of the evolution of North American temperate floras and the nature of Asian – North American disjunct taxa.


2005 ◽  
Vol 42 (2) ◽  
pp. 167-185 ◽  
Author(s):  
David R Greenwood ◽  
S Bruce Archibald ◽  
Rolf W Mathewes ◽  
Patrick T Moss

The late Early to early Middle Eocene Okanagan Highlands fossil sites, spanning ~1000 km north–south (northeastern Washington State, southern British Columbia) provide an opportunity to reconstruct biotic communities across a broad upland landscape during the warmest part of the Cenozoic. Plant taxa from these fossil sites are characteristic of the modern eastern North American deciduous forest zone, principally the mixed mesophytic forest, but also include extinct taxa, taxa known only from eastern Asian mesothermal forests, and a small number of taxa restricted to the present-day North American west coast coniferous biome. In this preliminary report, paleoclimates and forest types are reconstructed using collections from Republic in Washington State, USA., and Princeton, Quilchena, Falkland, McAbee, Hat Creek, Horsefly, and Driftwood Canyon in British Columbia, Canada. Both leaf margin analysis (LMA) and quantitative bioclimatic analysis of identified nearest living relatives of megaflora indicated upper microthermal to lower mesothermal moist environments (MAT ~10–15 °C, CMMT > 0 °C, MAP > 100 cm/year). Some taxa common to most sites suggest cool conditions (e.g., Abies, other Pinaceae; Alnus, other Betulaceae). However, all floras contain a substantive broadleaf deciduous element (e.g., Fagaceae, Juglandaceae) and conifers (e.g., Metasequoia) with the bioclimatic analysis yielding slightly higher MAT than LMA. Thermophilic (principally mesothermal) taxa include various insects, the aquatic fern Azolla, palms, the banana relative Ensete, taxodiaceous conifers, Eucommia and Gordonia, taxa which may have occurred near their climatic limits. The mixture of thermophilic and temperate insect and plant taxa indicates low-temperature seasonality (i.e., highly equable climate).



2005 ◽  
Vol 42 (2) ◽  
pp. 151-166 ◽  
Author(s):  
Richard M Dillhoff ◽  
Estella B Leopold ◽  
Steven R Manchester

Megafossils and pollen data are used to compare the flora found at the McAbee site, located near the town of Cache Creek, British Columbia, to six other well-collected Eocene lacustrine floras of Washington and western British Columbia. A diverse flora is found at McAbee consisting of at least 87 taxa. Gymnosperms are common, including sixteen separate species, 14 conifers and two ginkgos. A minimum of 67 angiosperm genera are represented in the flora, many yet to be described. The dominant dicotyledonous elements of the leaf assemblage at McAbee include Fagus (also represented by nuts and cupules) with Ulmus and representatives of the Betulaceae, especially Betula and Alnus. The confirmation of Fagus, also rarely found from sites at Princeton, British Columbia, and Republic, Washington, provides the oldest well-documented occurrence of the genus, predating the Early Oligocene records of Fagus previously reported for North America, Asia, and Europe. Data provided by pollen analysis broadens our knowledge of the McAbee flora. Angiosperm pollen typically predominates over gymnosperms with the Ulmoideae and Betulaceae being the most common angiosperm pollen types. Members of the Pinaceae dominate the gymnosperm pollen record. Paleoclimatic estimates for McAbee are slightly cooler than for the Republic and Princeton localities and thermophilic elements, such as Sabal found at Princeton or Ensete and Zamiaceae found at Republic are not known from McAbee.



1989 ◽  
Vol 26 (4) ◽  
pp. 829-844 ◽  
Author(s):  
M. Bardoux ◽  
E. Irving

The middle Eocene Marron volcanics (mean age 52 ± 2 Ma) of the Kelowna outlier form the upper part of the hanging wall of the westerly dipping Okanagan Valley fault (OVF) in south-central British Columbia. They overlie Quesnellia. The OVF is currently interpreted as the westernmost member of a network of low-angle extension faults in the southern Omenica belt. The OVF was active in the middle Eocene at much the same time that the Marron volcanics were cooling. Relative to present horizontal, the magnetizations are widely scattered (Fisher's precision parameter k = 8) and after correction for bedding attitudes, there is no significant improvement (k = 9). Evidently, some magnetizations were acquired before (referred to as category 1) and others after (category 2) tilting; that is, the horizontal plane at the time of magnetization sometimes did and sometimes did not coincide with the bedding plane. Partial unfolding experiments, carried out on the two categories separately, yield a precision comparable to that expected for paleosecular variation, and a mean direction (D, I) of 352°, 70° (24 sites spanning 2000 m, 275 specimens, k = 23, α95 = 6°, paleopole 86°N, 230°E, A95 = 10°). The Marron is predominantly normally magnetized. Rock units slightly older and others slightly younger are reversely magnetized. The transition from reversed to normal polarity occurs in basal beds of the Marron Formation. The overall mean direction of the Marron and stratigraphically adjacent units is 352°, 69 °(28 sites, 300 specimens, spaning 4000 m, k = 21, α95 = 6°), yielding a paleopole at 85°N, 197°E (A95 = 10°), which is in excellent agreement with that for middle Eocene rocks of cratonic North America. Hence this part of Quesnellia had reached its present position relative to North America by middle Eocene time, and there has been no significant rotation of it. In contrast, the mean direction (020°, 72°, k = 9, α95 = 11°) after correction for bedding (calculated assuming the magnetization to be entirely pretilting) implies a clockwise rotation of 28°. We believe that this is incorrect; the apparent rotation, we argue, is caused by wrongly assuming that the bedding plane always coincides with the paleohorizontal at the time magnetism is acquired.Further tests have been carried out on intrusive and metamorphic core-complex rocks in the region of Eocene crustal extension 100 km to the east of Kelowna. These rocks are coeval with the Marron, and are located in both the hanging walls and footwalls of the Slocan Lake normal extension fault, which dips 30° eastward. Paleodirections are very different from those at Kelowna (four bodies, mean direction (D, I) 60°, 52°, k = 66, α95 = 6°), and we argue that this divergence is caused by tilting 37 ± 10° to the west antithetical to the Slocan Lake fault. We suggest that paleomagnetism provides a means by which tilts in such plutonic and metamorphic terrains can be determined. We suggest further that such tilts may have been responsible for some of the aberrant magnetizations observed in plutonic rocks of the Coast Plutonic Complex being much more widespread in the cordillera than previously envisioned.



1977 ◽  
Vol 14 (11) ◽  
pp. 2578-2592 ◽  
Author(s):  
J. W. Hillhouse

Paleomagnetic evidence indicates that the extensive early Mesozoic basalt field near McCarthy, south-central Alaska, originated far south of its present position relative to North America. Results obtained from the Middle and (or) Upper Triassic Nikolai Greenstone suggest that those basalts originated within 15° of the paleoequator. This position is at least 27° (3000 km) south of the Upper Triassic latitude predicted for McCarthy on the basis of paleomagnetic data from continental North America. The Nikolai pole, as determined from 50 flows sampled at 5 sites, is at 2.2° N, 146.1° E (α95 = 4.8°). The polarity of the pole is ambiguous, because the corresponding magnetic direction has a low inclination and a westerly declination. Therefore, the Nikolai may have originated near 15° N latitude or, alternatively, as far south as 15° S latitude. In addition to being displaced northward, the Nikolai block has been rotated roughly 90° about the vertical axis. A measure of the reliability of this pole is provided by favorable results from the following tests: (1) Within one stratigraphic section, normal and reversed directions from consecutive flows are antipolar. (2) Consistent directions were obtained from sites 30 km apart. (3) Application of the fold test indicated the magnetization was acquired before the rocks were folded. (4) The magnetizations of several pilot specimens are thermally stable up to 550 °C. The stable component is probably carried by magnetite with lamellar texture, a primary feature commonly acquired by a basalt at high temperature during initial cooling of the magma. Geologic and paleomagnetic evidence indicates that the Nikolai is allochthonous to Alaska and that, together with associated formations in southern Alaska and British Columbia, it is part of a now disrupted equatorial terrane.



1992 ◽  
Vol 66 (5) ◽  
pp. 839-846 ◽  
Author(s):  
Mark V. H. Wilson ◽  
Donald B. Brinkman ◽  
Andrew G. Neuman

Contrary to ideas that Cretaceous fresh waters contained few teleosts, there were several taxa of Esocoidei (pikes and relatives) in North American Cretaceous rivers. Dentaries and palatines of Campanian to Maastrichtian age all have C-shaped tooth bases and other distinctive features of shape and foramina. The fossils include at least three distinct kinds, two of which are described here as new genera and species in the Esocidae: Estesesox foxi n. gen. and sp. and Oldmanesox canadensis n. gen. and sp.These old, diverse, and apparently primitive specimens show that pikes radiated when Eurasia and North America were still joined. Some references in the literature to the Cretaceous fish Platacodon Marsh are based on referred dentaries that are here identified as esocoid fossils. The Esocidae are the first example of a family of Recent North American freshwater teleosts that has been shown to have speciated in Cretaceous fresh waters and survived the terminal Cretaceous extinction.



1964 ◽  
Vol 21 (5) ◽  
pp. 933-939 ◽  
Author(s):  
Richard H. Rosenblatt

A new species, Pholis clemensi, referred to the family Pholidae, is named and described from 12 specimens taken in southern British Columbia waters and the Strait of Juan de Fuca. Pholis clemensi is compared with other members of the genus, and a key is given to the North American species.



Author(s):  

Abstract A new distribution map is provided for Rhagoletis indifferens Curran Diptera: Tephritidae Western cherry fruit fly, North American Cherry fruit fly. Attacks Prunus avium and sometimes P. virginiana, P. salicina and P. subcordata Information is given on the geographical distribution in NORTH AMERICA, Canada, British Columbia, USA, California, Idaho, Montana, Oregon, Utah, Washington, Wyoming.



1979 ◽  
Vol 111 (10) ◽  
pp. 1121-1126 ◽  
Author(s):  
K.B. Bolte ◽  
Eugene Munroe

AbstractThe palaearctic species Hemithea aestivaria (Hübner) (Lepidoptera: Geometridae: Geometrinae: Hemitheini), newly reported from British Columbia, is described, discussed and illustrated. The genus and species are new to the North American fauna.



2019 ◽  
Vol 56 (8) ◽  
pp. 803-813
Author(s):  
Gerald Mayr ◽  
S. Bruce Archibald ◽  
Gary W. Kaiser ◽  
Rolf W. Mathewes

We survey the known avian fossils from Ypresian (early Eocene) fossil sites of the North American Okanagan Highlands, mainly in British Columbia (Canada). All specimens represent taxa that were previously unknown from the Eocene of far-western North America. Wings from the McAbee site are tentatively referred to the Gaviiformes and would constitute the earliest fossil record of this group of birds. A postcranial skeleton from Driftwood Canyon is tentatively assigned to the Songziidae, a taxon originally established for fossils from the Ypresian of China. Two skeletons from Driftwood Canyon and the McAbee site are tentatively referred to Coliiformes and Zygodactylidae, respectively, whereas three further fossils from McAbee, Blakeburn, and Republic (Washington, USA) are too poorly preserved for even a tentative assignment. The specimens from the Okanagan Highlands inhabited relatively high paleoaltitudes with microthermal climates (except Quilchena: lower mesothermal) and mild winters, whereas most other Ypresian fossil birds are from much warmer lowland paleoenvironments with upper mesothermal to megathermal climates. The putative occurrence of a gaviiform bird is particularly noteworthy because diving birds are unknown from other lacustrine Ypresian fossil sites of the Northern Hemisphere. The bones of the putative zygodactylid show a sulphurous colouration, and we hypothesize that this highly unusual preservation may be due to the metabolic activity of sulphide-oxidizing bacteria.



1978 ◽  
Vol 15 (6) ◽  
pp. 971-980 ◽  
Author(s):  
Robert J. Fulton ◽  
Geoffrey W. Smith

The late Pleistocene deposits of south-central British Columbia record two major glacial and two major nonglacial periods of deposition. The oldest recognized Pleistocene deposits, called Westwold Sediments, were deposited during a nonglacial interval more than 60 000 years ago. Little information is available on the climate of this period, but permafrost may have been present at one time during final stages of deposition of Westwold Sediments. The latter part of this nonglacial period is probably correlative with the early Wisconsin Substage of the Great Lakes – St. Lawrence Valley area. However, deposition of the Westwold Sediments may have begun during the Sangamon Interglacial.Okanagan Centre Drift is the name applied to sediments deposited during the glaciation that followed deposition of Westwold Sediments. Okanagan Centre Drift is known to be older than 43 800 years BP and probably is older than 51 000. It is considered to correlate with an early Wisconsin glacial period.Bessette Sediments were deposited during the last major nonglacial period, which in south-central British Columbia persisted from at least 43 800 years BP (possibly more than 51 000) to about 19 000 years BP. This episode corresponds to Olympia Interglaciation of the Pacific Coast region and the mid-Wisconsin Substage of the Great Lakes – St. Lawrence Valley area. During parts of Olympia Interglaciation the climate was probably as warm as the present-day climate in the interior of British Columbia. Information from coastal regions indicates that there may have been periods of cooler and moister climate.Kamloops Lake Drift was deposited during the last major glaciation of south-central British Columbia. Ice occupied lowland areas from approximately 19 000 to 10 000 years BP. This period corresponds approximately to the Fraser Glaciation of the Pacific Coast region and the late Wisconsin Substage of central and eastern parts of North America.



Sign in / Sign up

Export Citation Format

Share Document