Structural testing of tectonic hypotheses by field-based analysis of distributed tangential shear: examples from major high-strain zones in the Grenville Province and other parts of the southern Canadian Shield

2005 ◽  
Vol 42 (10) ◽  
pp. 1927-1947 ◽  
Author(s):  
W M Schwerdtner ◽  
U P Riller ◽  
A Borowik

The Grenville Province and other parts of the Canadian Shield contain major (>100 km long) high-strain zones, also called shear belts or ductile shear zones, that are hosted by heterogeneously deformed gneisses and schists. In well-exposed segments of three nontabular zones whose dip angle is known locally, at the erosion level and (or) in the shallow subsurface, we investigate the tangential shear strain (better called the tangential unit shear or TUS) without assuming that mineral-shape lineations, common varieties of stretching lineations, are effectively parallel to the local TUS direction. Employing a graphic technique that copes with the geometric conditions of general triaxial strain, we approximate the actual direction and find the sense of local TUS in parts of (i) the Parry Sound shear zone, Grenville Province; (ii) the South Range shear zone, Southern Province; and (iii) the Uchi – English River subprovince boundary zone, Superior Province. Information thus obtained for individual high-strain zones in Ontario confirms the validity of published hypotheses: (i) 1020–970 Ma, normal-sense distributed shearing in the Grenvillian thrust stack; (ii) northwest- directed thrusting of Huronian rocks over Archean basement; and (iii) north-directed thrusting of English River metasediments and associated migmatites onto the Uchi granite–greenstone terrain, under peak metamorphic conditions.

2020 ◽  
Author(s):  
Zoe Braden ◽  
Whitney Behr

<p>The plate interface in subduction zones accommodates a wide range of seismic styles over different depths as a function of pressure-temperature conditions, compositional and fluid-pressure heterogeneities, deformation mechanisms, and degrees of strain localization. The shallow subduction interface (i.e. ~2-10 km subduction depths), in particular, can exhibit either slow slip events (e.g. Hikurangi) or megathrust earthquakes (e.g. Tohoku). To evaluate the factors governing these different slip behaviors, we need better constraints on the rheological properties of the shallow interface. Here we focus on exhumed rocks within the Chugach Complex of southern Alaska, which represents the Jurassic to Cretaceous shallow subduction interface of the Kula and North American plates. The Chugach is ideal because it exhibits progressive variations in subducted rock types through time, minimal post-subduction overprinting, and extensive along-strike exposure (~250 km). Our aims are to use field structural mapping, geochronology, and microstructural analysis to examine a) how strain is localized in different subducted protoliths, and b) the deformation processes, role of fluids, and strain localization mechanisms within each high strain zone. We interpret these data in the context of the relative ‘strengths’ of different materials on the shallow interface and possible styles of seismicity.  </p><p>Thus far we have characterized deformation features along a 1.25-km-thick melange belt within the Turnagain Arm region southeast of Anchorage.  The westernmost melange unit is sediment poor and consists of deep marine rocks with more chert, shale and mafic rocks than units to the east. The melange fabric is variably developed (weakly to strongly) throughout the unit and is steeply (sub-vertical) west-dipping with down-dip lineations. Quartz-calcite-filled dilational cracks are oriented perpendicular to the main melange fabric.</p><p>Drone imaging and structural mapping reveals 3 major discrete shear zones and 6-7 minor shear zones within the melange belt, all of which exhibit thrust kinematics. Major shear zones show a significant and observable strain gradient into a wide (~1 m) region of high strain and deform large blocks while minor shear zones are generally developed in narrow zones (~10-15 cm) of high strain between larger blocks. One major shear zone is developed in basalt and has closely-spaced, polished slip surfaces that define a facoidal texture; the basalt shear zone is ~1 m thick. Preserved pillows are observable in lower strain areas on either side of the shear zone but are deformed and indistinguishable within the high strain zone. The other two major shear zones are developed in shale and are matrix-supported with wispy, closely-spaced foliation and rotated porphyroclasts of chert and basalt; the shale shear zones are ~0.5-2 m thick.  </p><p>Abundant quartz-calcite veins parallel to the melange fabric and within shale shear zones record multiple generations of fluid-flow; early veins appear to be more silicic and later fluid flow involved only calcite precipitation. At the west, trench-proximal end of the mélange unit there is a 5-10 m thick silicified zone of fluid injection that is bound on one side by the basalt shear zone. Fluid injection appears to pre-date or be synchronous with shearing.</p>


2002 ◽  
Vol 39 (5) ◽  
pp. 569-587 ◽  
Author(s):  
Jeremy Hall ◽  
Keith E Louden ◽  
Thomas Funck ◽  
Sharon Deemer

The Eastern Canadian Shield Onshore–Offshore Transect (ECSOOT) of the Lithoprobe program included 1200 km of normal-incidence seismic profiles and seven wide-angle seismic profiles across Archean and Proterozoic rocks of Labrador, northern Quebec, and the surrounding marine areas. Archean crust is 33–44 km thick. P-wave velocity increases downwards from 6.0 to 6.9 km/s. There is moderate crustal reflectivity, but the reflection Moho is unclear. Archean crust that stabilized in the Proterozoic is similar except for greater reflectivity and a well-defined Moho. Proterozoic crust has similar or greater thickness, variable lower crustal velocities, and strong crustal reflectivity. Geodynamic processes of Paleoproterozoic growth of the Canadian Shield are similar to those observed in modern collisional orogens. The suturing of the Archean Core Zone and Superior provinces involved whole-crustal shearing (top to west) in the Core Zone, linked to thin-skinned deformation in the New Quebec Orogen. The Torngat Orogen sutures the Nain Province to the Core Zone and reveals a crustal root, in which Moho descends to 55 km. It formed by transpression and survived because of the lack of postorogenic heating. Accretion of the Makkovik Province to the Nain Province involves delamination at the Moho and distributed strain in the juvenile arcs. Delamination within the lower crust characterizes the accretion of Labradorian crust in the southeastern Grenville Province. Thinning of the crust northwards across the Grenville Front is accentuated by Mesozoic extension that reactivates Proterozoic shear zones. The intrusion of the Mesoproterozoic Nain Plutonic Suite is attributed to a mantle plume ponding at the base of the crust.


2005 ◽  
Vol 42 (10) ◽  
pp. 1907-1925 ◽  
Author(s):  
N Culshaw

Low-plunging, transport-parallel F3 folds are common at all scales in the Central Gneiss Belt of the Grenville Province, but few of these folds are sheath folds. Where the D1–D2 Parry Sound shear zone intersects the D3 Shawanaga shear zone (SSZ) at a high angle, F3 folds formed at several scales (centimetre to greater than outcrop scale) in layered D1–D2 "straight" gneisses. At the start of their evolution, the F3 folds formed just beyond the SSZ with hinges near orthogonal to the D3 shear direction and with typical buckle features, e.g., wavelengths vary with layer thickness, and hinges are discontinuous and bifurcate. The buckle folds evolved within the SSZ by rotation of hinges towards the shear direction. Even though hinges initiated at a high angle to the shear direction, sheath folds were not produced. In addition to tightening the buckles, the ductile reorientation produced thin–thick (extended–shortened) limb pairs and very straight, ridge-like fold hinges and removed small folds from the extended limbs of larger folds. Such features may serve as criteria to distinguish transport-parallel folds that initiated in layering at high angles to the shear direction from those formed in layers containing the shear direction. A general shear parallel to the SSZ can reproduce several features inferred to mark stages in the progressive reorientation of the folds; the pure shear component of the general shear is inferred to have had a positive stretch direction down the dip of the shear zone, at a high angle to the transport (simple shear) direction. The interplay of buckling and shearing in the study area is, plausibly, the expression of deformation at the upper boundary of a channel-like flow that succeeded initial crustal thickening.


2006 ◽  
Vol 43 (4) ◽  
pp. 421-432 ◽  
Author(s):  
M K Herrell ◽  
A P Dickin ◽  
W A Morris

Over sixty new neodymium model ages were determined on orthogneisses from the Kipawa–Mattawa region of the Grenville Province to refine previous Nd isotope mapping work in this area. The combined Nd data sets support a tectonic model involving three major thrust sheets in the Kipawa area, separated by major shear zones. The uppermost sheet is correlated with the Allochthonous Polycyclic Belt, represented in the study area by the Lac Watson nappe, along with two allochthonous klippen. These have Nd model ages < 1.8 Ga, consistent with previous work. Within the underlying Parautochthonous Belt, previous workers identified a second major shear zone, separating rocks with Archean and Proterozoic crystallization ages, respectively. These two thrust sheets also have distinct Nd isotope signatures. The lowermost sheet consists of metamorphosed but otherwise relatively pristine Archean crust with Nd model ages > 2.6 Ga, whereas the overlying sheet consists of magmatically reworked Archean parautochthon with model ages from 1.8–2.6 Ga. A residual magnetic-field map developed from aeromagnetic data was compared with the terrane boundaries determined from isotopic data. The aeromagnetic data accurately reflect the margin of relatively pristine Archean crust in the study area, but this boundary does not correspond to the Allochthon Boundary Thrust. Instead, this boundary resulted from downcutting of the basal shear zone of the allochthon. This caused décollement of the strongly reworked Archean parautochthon to generate a duplex thrust sheet that was transported northwestwards over pristine Archean crust.


1970 ◽  
Vol 7 (3) ◽  
pp. 786-813 ◽  
Author(s):  
J. G. Ramsay ◽  
R. H. Graham

In rocks deformed by natural orogenic processes it is usual to find that the finite strain state varies from locality to locality. In some deformed rocks high strain states are localized within approximately planar zones commonly known as "shear belts".The general relationships that exist between variable displacement and variable strain state are established, and these general equations are solved for particular types of strain within shear zones. Only a limited number of types of solution are possible. Using these solutions the geometric forms of the structures found in shear zones in several regions are analyzed. Methods for computing the finite strain through these zones are described, and these finite strains are integrated to determine the total displacements across these zones. Schistosity is developed in some of the shear zones described. It is not parallel to the walls of the shear zone and is therefore not parallel to the dominant displacement (shear) directions. The schistosity appears to be formed perpendicular to the principal finite shortening (i.e. perpendicular to the shortest axis of the finite strain ellipsoid). Variations of the schistosity planes represent variations in the finite strain trajectories of XY planes in the strain states ([Formula: see text] ellipsoid axes). The intensity of development of the schistosity is correlated with the values of the principal finite strains.


1992 ◽  
Vol 29 (2) ◽  
pp. 328-337 ◽  
Author(s):  
Joseph Clancy White ◽  
Christopher K. Mawer

Lithospheric-scale thrusts from the west Newfoundland ophiolite belt (White Hills Peridotite shear zone) and the south-western Grenville Province (Parry Sound shear zone) involve rocks of lower crustal and (or) upper mantle origin that exhibit intense crystal-plastic deformation of plagioclase, K-feldspar, orthopyroxene, and clinopyroxene, minerals that are commonly viewed as representative of low-ductility phases. The occurrence of this extreme deformation in shear zones that exhibit similar lower crustal syntectonic P–T conditions suggests a phenomenological link between the megathrust environment and both the generation and subsequent preservation of the observed deformation microstructures. An empirical homologous parameter is constructed in an attempt to characterize conditions for similar behaviour among different minerals and to explore the feasibility of refining a threshold recovery–preservation condition within the megathrusts studied. This parameter predicts, at the estimated syntectonic temperature of 800 °C, the similarity of microstructures in highly strained albite and orthopyroxene crystals observed in both megathrusts. This temperature is interpreted as a lower limit for the upper threshold of microstructure preservation in albite and orthopyroxene for the particular megathrust history. Comparison of tectonic constraints with strain rates calculated at the inferred threshold temperature for several minerals with tectonic constraints indicates that strain rates of at least 10−12 s−1 are both rheologically possible and geometrically plausible in shear zones of kilometre-scale widths. The associated lithosphere strength during megathrust displacement is on the order of 1–50 MPa. These data support formation of synkinematic records within shear zones that preserve evidence of lithospheric behaviour over crustal-thickness length scales.


Lithosphere ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 652-682 ◽  
Author(s):  
Luisa F. Buriticá ◽  
Joshua J. Schwartz ◽  
Keith A. Klepeis ◽  
Elena A. Miranda ◽  
Andy J. Tulloch ◽  
...  

Abstract We investigated the interplay between deformation and pluton emplacement with the goal of providing insights into the role of transpression and arc magmatism in forming and modifying continental arc crust. We present 39 new laser-ablation–split-stream–inductively coupled plasma–mass spectrometry (LASS-ICP-MS) and secondary ion mass spectrometry (SIMS) 206Pb/238U zircon and titanite dates, together with titanite geochemistry and temperatures from the lower and middle crust of the Mesozoic Median Batholith, New Zealand, to (1) constrain the timing of Cretaceous arc magmatism in the Separation Point Suite, (2) document the timing of titanite growth in low- and high-strain deformational fabrics, and (3) link spatial and temporal patterns of lithospheric-scale transpressional shear zone development to the Cretaceous arc flare-up event. Our zircon results reveal that Separation Point Suite plutonism lasted from ca. 129 Ma to ca. 110 Ma in the middle crust of eastern and central Fiordland. Deformation during this time was focused into a 20-km-wide, arc-parallel zone of deformation that includes previously unreported segments of a complex shear zone that we term the Grebe shear zone. Early deformation in the Grebe shear zone involved development of low-strain fabrics with shallowly plunging mineral stretching lineations from ca. 129 to 125 Ma. Titanites in these rocks are euhedral, are generally aligned with weak subsolidus fabrics, and give rock-average temperatures ranging from 675 °C to 700 °C. We interpret them as relict magmatic titanites that grew prior to low-strain fabric development. In contrast, deformation from ca. 125 to 116 Ma involved movement along subvertical, mylonitic shear zones with moderately to steeply plunging mineral stretching lineations. Titanites in these shear zones are anhedral grains/aggregates that are aligned within mylonitic fabrics and have rock-average temperatures ranging from ∼610 °C to 700 °C. These titanites are most consistent with (re)crystallization in response to deformation and/or metamorphic reactions during amphibolite-facies metamorphism. At the orogen scale, spatial and temporal patterns indicate that the Separation Point Suite flare-up commenced during low-strain deformation in the middle crust (ca. 129–125 Ma) and peaked during high-strain, transpressional deformation (ca. 125–116 Ma), during which time the magmatic arc axis widened to 70 km or more. We suggest that transpressional deformation during the arc flare-up event was an important process in linking melt storage regions and controlling the distribution and geometry of plutons at mid-crustal levels.


2002 ◽  
Vol 39 (3) ◽  
pp. 313-329 ◽  
Author(s):  
Gerald M Ross ◽  
David W Eaton

The western Canadian Shield of northern Alberta is composed of a series of continental slivers that were accreted to the margin of the Archean Rae hinterland ca. 1.9–2.0 Ga., preserving a unique record of continental evolution for the interval 2.1–2.3 Ga. This part of Laurentia owes its preservation to the accretionary style of tectonic assembly south of the Great Slave Lake shear zone, which contrasts with indentation–escape processes that dominate the Paleoproterozoic record farther north. The Buffalo Head and Chinchaga domains form the central core of this region, comprising a collage of ca. 2325–2045 Ma crustal elements formed on an Archean microcontinental edifice, and similar age crust is preserved as basement to the Taltson magmatic zone. The distribution of magmatic ages and inferred collision and subduction zone polarity are used to indicate closure of intervening oceanic basins that led to magmatism and emplacement of continental margin arc and collisional belts that formed from ca. 1998 to1900 Ma. Lithoprobe crustal seismic profiles complement the existing geochronologic and geologic databases for northern Alberta and elucidate the nature of late stages of the accretionary process. Crustal-scale imbrication occurred along shallow eastward-dipping shear zones, resulting in stacking of arc slivers that flanked the western Buffalo Head terrane. The seismic data suggest that strain is concentrated along the margins of these crustal slivers, with sparse evidence for internal penetrative deformation during assembly. Post-collisional mafic magmatism consisted of widespread intrusive sheets, spectacularly imaged as regionally continuous subhorizontal reflections, which are estimated to extend over a region of ca. 120 000 km2. The form of such mid-crustal magmatism, as subhorizontal sheets (versus vertical dykes), is interpreted to represent a style of magma emplacement within a confined block, for which a tectonic free face is unavailable.


1992 ◽  
Vol 29 (7) ◽  
pp. 1412-1423 ◽  
Author(s):  
Michael D. Higgins ◽  
Otto van Breemen

U–Pb analyses of zircon and baddeleyite from the south-central and southeastern parts of the Lac-Saint-Jean Anorthosite Complex (LSJA) give an igneous crystallization age of 1157 ± 3 Ma. Parts of the anorthosite were deformed in the solid state and subsequently intruded by a diorite megadyke, which also gives a crystallization age of 1157 ± 3 Ma, indicating that crystallization and deformation of the anorthosite were essentially synchronous. The diorite megadyke was intruded into a north-northeast-trending shear zone and deformed by sinistral strike-slip movements. Emplacement was followed by intrusion of a subparallel leucotroctolite megadyke that again gives the same crystallization age and hence dates movement of the shear zone at 1157 ± 3 Ma. This short history of crystallization and synchronous deformation rules out slow diapiric rise as the emplacement mechanism for the anorthosite. Instead, anorthosite parental magmas probably rose up offsets in subvertical strike-slip shear zones to their present level.In the southwestern part of the LSJA an age of 1142 ± 3 Ma is interpreted to represent igneous crystallization. Contemporary thermal metamorphic effects recorded in the southeastern sector by growth of new zircon in granophyric segregations and zircon coronas on baddeleyite suggest this event was more widespread at slightly deeper levels. Evidence has not been found for a separate Grenville regional metamorphism.The emplacement into the LSJA at 1076 ± 3 Ma of two small leucogabbro intrusions was part of a widespread magmatic event similar to the main event at 1157–1142 Ma.


1997 ◽  
Vol 34 (6) ◽  
pp. 819-832 ◽  
Author(s):  
Xiao-ou Zhao ◽  
Shaocheng Ji ◽  
Jacques Martignole

Quartz in deformed rocks from two large, high-grade shear zones around the Morin anorthosite (Morin terrane, Grenville Province) displays distinctive microstructures, as well as c-axis preferred orientations. In the west-dipping Morin shear zone, east of the Morin anorthosite, four distinct quartz microstructures (types 1–4) are identified, based on deformation features and grain size. The c-axis orientations are characterized by a single maximum near the stretching lineation and two maxima in type 1 microstructure, and by an asymmetrical, single girdle in type 2 microstructure. Quartz c axes show crossed-girdle pattern in type 3 microstructure. Both quartz microstructures and c-axis preferred orientations suggest that crystal–plastic slip and dynamic recrystallization are the dominant deformation mechanisms. The asymmetry of c-axis orientations with respect to the mylonitic foliation, as well as the substructures developed in quartz, indicates a dextral sense of shear in the Morin shear zone. Type 4 microstructure, which developed in some gneisses and granulites, is interpreted to record influence of postdeformation annealing by which quartz c-axis orientations were partially modified. In the north-northeast-trending, subvertical Labelle shear zone that separates the Morin terrane from the Mont-Laurier terrane, metamorphic assemblages and structural elements suggest that an early, sinistral strike-slip deformation occurred under granulite-facies conditions. This was overprinted by a late downdip movement of the Mont-Laurier terrane under retrogressive conditions. Quartz in felsic gneisses from this zone shows two types of microstructures: one is similar to type 4 from the Morin shear zone, the other is named type 5. Quartz c-axis orientations are complex and less systematic, due to overprinting by two episodes of deformation and possible annealing. These complexities limit the utility of quartz microstructures and c-axis data in the structural analysis of the Labelle shear zone.


Sign in / Sign up

Export Citation Format

Share Document