Kennetcook thrust system: late Paleozoic transpression near the southern margin of the Maritimes Basin, Nova Scotia

2010 ◽  
Vol 47 (2) ◽  
pp. 137-159 ◽  
Author(s):  
John W.F. Waldron ◽  
Carlos G. Roselli ◽  
John Utting ◽  
Stanley K. Johnston

A major zone of deformation affects Early Carboniferous rocks in the southern part of the Maritimes Basin of Nova Scotia, close to the boundary between the Avalon and Meguma terranes of the Appalachians. Field relationships at Cheverie indicate thrusting of Tournaisian Horton Group clastics over Viséan Windsor Group carbonates, evaporites, and clastics, a relationship confirmed by the Cheverie #01 well. Mapped relationships to the south indicate that a system of thrusts, here termed the Kennetcook thrust system, climbs upsection to the southeast, becoming a décollement within Windsor Group evaporites. Industry seismic profiles clearly show deformed Windsor Group, and include fold and fault structures indicative of evaporite flow and solution collapse. Below the Windsor Group, half-grabens filled with Horton Group are clearly imaged; offsets at graben-related faults show that these structures were inverted during later shortening. Above the Windsor Group, less deformed rocks of the Pennsylvanian Scotch Village Formation (Cumberland Group) fill minibasins created by the withdrawal or solution of deformed Windsor evaporites. The timing of thrusting is constrained by these relationships and by crosscutting intrusions to a narrow interval around the Mississippian–Pennsylvanian boundary prior to ∼315 Ma. Deformation was probably related to dextral transpression along the former Avalon–Meguma boundary. Depending on how shortening was transmitted to the southeast, up to 1500 km2 of southern mainland Nova Scotia may be underlain by tectonically transported rocks.

1997 ◽  
Vol 134 (5) ◽  
pp. 627-636 ◽  
Author(s):  
L. R. M. COCKS ◽  
W. S. MCKERROW ◽  
C. R. VAN STAAL

During Cambrian and earliest Ordovician times, Avalonia was an area forming an integral part of the huge Gondwanan continent, probably along the northern margin of Amazonia, until in early Ordovician (late Arenig or Llanvirn) time it split off from Gondwana, leaving a widening Rheic Ocean to its south. Today, its southern margin with Gondwana extends northeast from east of Cape Cod, Massachusetts, through Nova Scotia north of the Meguma terrane, and thence below sea level to the south of Newfoundland. On the eastern side of the present Atlantic, the southern margin may separate southwest Portugal from the rest of the Iberian Peninsula; it can be traced eastwards with more certainty from the south Cornwall nappes to a line separating the Northern Phyllite Belt (on the southern margin of the Rhenohercynian terrane) and the Mid-German Crystalline High. There is no certain evidence of Avalonian crust to the northeast of the Elbe Line. The northern margin of Avalonia extends westwards from south of Denmark to the British Isles, where it merges with the Iapetus Ocean suture between Scotland and England. Traced westwards, it crosses Ireland and reappears in northern Newfoundland to the east of New World Island, where it may follow the trace of the Dog Bay Line and the Cape Ray Fault. Recent work suggests that the northern margin of Avalonia may clip the northern tip of Cape Breton Island in Nova Scotia, and then enter the North American mainland at the Bay of Chaleur; it may then be traced from north and west of the Popelogan and Bronson Hill arcs to Long Island Sound near Newhaven, Connecticut. The Cambrian to Devonian faunas reflect the history of Avalonia: initially they were purely Gondwanan but, as Ordovician time proceeded, more genera crossed firstly the Tornquist Ocean as it narrowed between Avalonia and Baltica to close in latest Ordovician and early Silurian times, and secondly the Iapetus Ocean, so that by the early Silurian most of the benthic shelly faunas, apart from the ostracods, were the same round the adjacent margins of all three palaeocontinents.


2004 ◽  
Vol 41 (8) ◽  
pp. 987-996 ◽  
Author(s):  
P H Reynolds ◽  
S M Barr ◽  
C E White ◽  
P J Ténière

40Ar/39Ar dating of whole-rock samples and muscovite separates using age spectrum analysis, and of single muscovite grains using total fusion analysis, yields new insights into the timing of regional metamorphism and sediment provenance in the Late Devonian – Early Carboniferous Horton Group in the Lochaber–Mulgrave area of Nova Scotia. The time of regional metamorphism is constrained to ca. 340–335 Ma by whole-rock spectra from well-cleaved slate and shale samples from the lowermost Clam Harbour River and overlying Tracadie Road formations of the Horton Group. This ca. 340–335 Ma event may have been the result of burial and deformation of the Horton Group by older volcanic and sedimentary rocks of the Guysborough Group, which were overthrust from the south as the result of development of a positive flower structure at a restraining bend along the Cobequid–Chedabucto fault system, the boundary between the Meguma and Avalon terranes. Detrital muscovite ages of ca. 410–380 and ca. 500 Ma were obtained from single-grain analysis and from spectral analysis of separated grains. Whole-rock spectra for two samples from a mylonitic metasedimentary unit in the Cape Porcupine Complex yielded plateau ages of 364 ± 4 and 367 ± 4 Ma, providing a likely source for ca. 370–360 Ma detrital muscovite, ages that may be reflected in some of the age spectrum data. However, the Meguma terrane to the south is the most likely source for most of the detrital muscovite.


1993 ◽  
Vol 30 (5) ◽  
pp. 1091-1098 ◽  
Author(s):  
A. Thomas Martel ◽  
D. Colin McGregor ◽  
John Utting

Late Devonian (late Famennian) miospores have been found in the lowermost 7.3 m of the Horton Group on Harding Brook in the type area, Windsor Subbasin, Nova Scotia, below Tournaisian miospores of the Emphanisporites rotatus – Indotriradites explanatus Zone. Extending the age of the Horton Group in the type area down into the latest Devonian shows that the lowest beds of the ~ 1000 m thick group are coeval with latest Devonian rocks elsewhere in the Maritimes Basin that have been excluded from the Horton Group by some authors. Evidence presented here favours the argument that Late Devonian rocks lithologically similar to the Horton Group, deposited on the Acadian unconformity, should be included in that group. Miospore evidence indicates a minimum age of about 355 Ma for exhumation of the northeastern part of the South Mountain Batholith.


2010 ◽  
Vol 47 (7) ◽  
pp. 957-970 ◽  
Author(s):  
Peter H. Reynolds ◽  
Georgia Pe-Piper ◽  
David J.W. Piper

Single-grain ages of detrital muscovite from 15 sand(stone) samples from the Lower Carboniferous Horton Group and the Lower Cretaceous Chaswood Formation of central Nova Scotia were used to infer the nature of the Early Carboniferous unroofing of the Meguma terrane and the reworking of Carboniferous rocks in the Early Cretaceous. In the western Windsor Basin, a sample from the oldest Horton Group rocks yielded ages principally between ca. 400 and 380 Ma, suggesting that most of the muscovite present came from the metamorphic rocks of the Meguma terrane but was variably reset by the intrusion of the South Mountain Batholith at ca. 380 Ma. Other samples in this part of the basin show partial post-depositional resetting. Younger Horton Group metamorphic rocks in the eastern Windsor Basin contain many grains with ages of ca. 370–360 Ma, suggesting derivation from the central core of the South Mountain Batholith or the Musquodoboit Pluton. Horton Group sandstones from the western part of the St. Marys Basin contain muscovite derived from the Liscomb Complex along with metamorphic muscovite variably reset by the intrusion of this complex. In general, our data suggest predominant northward dispersion of muscovite from the Meguma terrane to the Horton Group and a lack of axial transport along the Horton grabens through central Nova Scotia, a pattern compatible with tectonic models in which the Meguma terrane is ramped over the Avalon terrane. Muscovite ages obtained for the Chaswood Formation compare well with those from the Horton Group rocks in the western St. Marys Basin. These rocks may have been exposed to rapid erosion by reactivation of the Cobequid–Chedabucto fault zone in the Early Cretaceous and the resulting sediments were perhaps transported to depositional sites along northeast-trending faults. Unlike the detrital monazites in these rocks, there is no evidence that any of the detrital muscovites came from distal sources outside the Meguma terrane.


2019 ◽  
Vol 157 (2) ◽  
pp. 248-262 ◽  
Author(s):  
J. Gregory Shellnutt ◽  
Jaroslav Dostal

AbstractThe Cambrian–Ordovician metasedimentary rocks of the Meguma terrane (Canadian Appalachians) were extensively intruded by silicic plutons during Middle Devonian to Early Carboniferous times. Syn-plutonic but volumetrically minor mafic-ultramafic intrusions were also emplaced. In most localities, the silicic plutons and mafic-ultramafic intrusions do not appear to be petrogenetically related and are likely derived from different sources. The Attwoods Brook gabbronorite of SW Nova Scotia yielded an in situ zircon weighted-mean 206Pb–238U age of 357.9 ± 3.3 Ma that is within the uncertainty of the age of the neighbouring Wedgeport pluton (357 ± 1 Ma). The Wedgeport pluton is a rare example of a mantle-derived, peraluminous A-type granite within the Meguma terrane. The similar ages and Nd isotopes of the Attwoods Brook gabbronorite (εNd(t) = +1.1 to +4.0) and Wedgeport pluton (εNd(t) = +2.1 to +3.3) suggest the two intrusions are petrogenetically related. Fractional crystallization modelling demonstrates that a parental magma similar to the Attwoods Brook gabbronorite can produce residual silicic liquids that resemble the granites of the Wedgeport pluton, indicating that they could be members of the same intrusive complex. The emplacement of the gabbronorite and Wedgeport pluton occurred during a period of tensional plate stress that was contemporaneous with rifting of the Maritimes Basin that produced the Fountain Lake continental flood basalts and A-type granites of the Cobequid Highlands within the Avalon terrane. It is possible that the Early Carboniferous rocks of SW Nova Scotia are related to the rifted-related magmatism within the Maritimes Basin.


2020 ◽  
Vol 57 (3) ◽  
pp. 149-176
Author(s):  
Nur Uddin Md Khaled Chowdhury ◽  
Dustin E. Sweet

The greater Taos trough located in north-central New Mexico represents one of numerous late Paleozoic basins that formed during the Ancestral Rocky Mountains deformation event. The late Paleozoic stratigraphy and basin geometry of the eastern portion of the greater Taos trough, also called the Rainsville trough, is little known because the strata are all in the subsurface. Numerous wells drilled through the late Paleozoic strata provide a scope for investigating subsurface stratigraphy and basin-fill architecture of the Rainsville trough. Lithologic data obtained predominantly from petrophysical well logs combined with available biostratigraphic data from the greater Taos trough allows construction of a chronostratigraphic framework of the basin fill. Isopach- and structure-maps indicate that the sediment depocenter was just east of the El Oro-Rincon uplift and a westerly thickening wedge-shaped basin-fill geometry existed during the Pennsylvanian. These relationships imply that the thrust system on the east side of the Precambrian-cored El Oro-Rincon uplift was active during the Pennsylvanian and segmented the greater Taos trough into the eastern Rainsville trough and the western Taos trough. During the Permian, sediment depocenter(s) shifted more southerly and easterly and strata onlap Precambrian basement rocks of the Sierra Grande uplift to the east and Cimarron arch to the north of the Rainsville trough. Permian strata appear to demonstrate minimal influence by faults that were active during the Pennsylvanian and sediment accumulation occurred both in the basinal area as well as on previous positive-relief highlands. A general Permian decrease in eustatic sea level and cessation of local-fault-controlled subsidence indicates that regional subsidence must have affected the region in the early Permian.


1997 ◽  
Vol 109 (10) ◽  
pp. 1279-1293 ◽  
Author(s):  
Keith Benn ◽  
Richard J. Horne ◽  
Daniel J. Kontak ◽  
Geoffrey S. Pignotta ◽  
Neil G. Evans

2021 ◽  
Author(s):  
Ming Wang ◽  
Shengjun Liang ◽  
Jiaojiao Li ◽  
Xiaoxing Lin ◽  
Yongjun Zhang

2011 ◽  
Vol 54 (7) ◽  
pp. 975-981 ◽  
Author(s):  
Tao Wang ◽  
ZongQi Wang ◽  
Zhen Yan ◽  
QuanRen Yan ◽  
YingLi Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document