The age of unconformity-related uranium mineralization in the Athabasca Basin, northern Saskatchewan

1992 ◽  
Vol 29 (8) ◽  
pp. 1623-1639 ◽  
Author(s):  
G. L. Cumming ◽  
D. Krstic

Age data are presented for major Athabasca Basin uranium deposits at Cigar Lake, Cluff Lake, Collins Bay, Dawn Lake, Eagle Point, McArthur River, Midwest, and Rabbit Lake, as well as for several minor or undeveloped deposits, including Hughes Lake and Nisto. The best constrained data indicate that almost all the deposits formed in a restricted time interval between about 1330 and 1380 Ma. This range of ages is believed to be real and not the result of uncertainties in the calculation of ages based on discordant data. The one major exception is the recently discovered NiAs-free deposit at McArthur River, for which a well-determined age of 1514 ± 18 Ma (2σ) has been obtained. Even this deposit yields an age in the1330–1380 Ma range for some material. Periods of reworking–redeposition occurred at ~1280, ~1000, ~575, and ~225 Ma. These may be basin-wide, affecting to some degree all the deposits that we have studied. Other times of redeposition are less well determined, but may be present as well. No ages that approach the ~1700 Ma age of the Athabasca Group have been found to date for unconformity-related deposits, and the Athabasca Basin mineralization is unrelated to the ~1750 Ma pitchblende vein deposits in the Beaverlodge Lake area.

1987 ◽  
Vol 24 (1) ◽  
pp. 10-23 ◽  
Author(s):  
C. J. Bray ◽  
E. T. C. Spooner ◽  
C. M. Hall ◽  
D. York ◽  
T. M. Bills ◽  
...  

The McClean group of uranium deposits consists of elongate pods of high-grade uranium mineralization (width = ~ 15–40 m) tightly confined to within ±40 m of the basal unconformity. Uraninite–coffinite–sulphide/arsenide–chlorite–siderite mineralization at McClean is surrounded by a muscovite/illite ± haematite hydrothermal alteration halo,which can contain coffinite–pararammelsbergite (NiAs2) – muscovite/illite nodules. Ten laser probe 40Ar/39Ar dates, two of which are step-heat runs showing good plateaus, and 10 conventional K – Ar dates for this material show a distribution with asharp beginning at ~ 1320 Ma, a marked peak in the 1250–1200 Ma class interval, and a tail to dates as young as 1002 ± 33 (1σ) Ma. These determinations are in complete agreement with direct (U–Pb and Sm–Nd) dates on uraninite at the Midwest (e.g., 1328 ± 9 and 1110 ± 28 Ma), Key Lake (e.g., 1350 ± 4 and 1281 ± 6 Ma), and Collins Bay B deposits(e.g., 1281 ± 80 Ma). Since estimated depositional ages for the Athabasca sedimentary sequence are in the 1470 ± 15 to1428 ± 15 Ma range, uranium mineralization and associated hydrothermal alteration started ~ 100–150 Ma after Athabasca sedimentation, a result consistent with fluid-inclusion data, which indicate that mineralization took place at ~ 160–220 °C beneath ~ 3000 m of cover at a relatively advanced stage in the evolution of the basin. It is suggested that the similar initiation dates for uranium mineralization might reflect a widespread faulting event that affected the eastern part of the basin. A muscovite/illite closure temperature calculated from a measured argon diffusion activation energy of 36 ± 4 kcal/mol(1 kcal = 4.1868 kJ) indicates that the base of the Athabasca Basin in the McClean area has not been disturbed by temperatures greater than ~ 140 °C for 1.1–1.0 Ga. It is suggested that mineralization ceased when fracture permeability had been sealed by crystallization of secondary minerals. The duration of mineralization may have been ~ 150 Ma, a relatively long time interval not unreasonable for the base of a sedimentary basin.Secondary illites interstitial to quartz grains from the HLM1 stratigraphic borehole give 40Ar/39Ar ages of 1459 ± 4, 1341 ± 4, and 1113 ± 11 Ma, indicating that formation of diagenetic sheet silicates predated uranium mineralization. Recrystallization or formation of sheet silicates in relict sedimentary layers and in subunconformity altered basement referred to as "regolith" started at approximately the same time, since dates of 1484 ± 55 Ma (sedimentary layer), 1482 ± 49 Ma (regolith), and 1453 ± 49 Ma (regolith) have been obtained. Resetting of interstitial, sedimentary layer, and regolith sheet-silicate dates continued to ages of, for example, 1113 ± 11 Ma (interstitial) and 1038 ± 55 Ma (sedimentary layer), which exactly coincide with the youngest ages obtained for the alteration halo associated with mineralization.The youngest date obtained is a 40Ar/39Ar plateau age of 673 ± 3 Ma. The sample (2045-517) was obtained from within 2 mm of a concentrated pitchblende nodule and may have been disturbed in some way by its proximity to uranium.


Author(s):  
Daniel Peter Ferguson ◽  
Guoxiang Chi ◽  
Charles Normand ◽  
Patrick Ledru ◽  
Odile Maufrais-Smith

The Athabasca Basin in northern Saskatchewan is host to many world-class uranium deposits associated with the unconformity between the Paleoproterozoic sandstone of the basin and the underlying crystalline basement (Jefferson et al., 2007).  While the style and tonnage of these deposits vary, the current genetic model for unconformity-related uranium deposits has been a practical tool for exploration in the Athabasca Basin. However, the factors which control the location and formation of these deposits is still not fully understood. A paragenetic and petrographic study of mineralization along the Midwest Trend, located on the northeastern margin of the Athabasca Basin, aims to refine the current model and to address the general problem: What are the factors which control mineralization and non-mineralization? The Midwest Trend will be used as a "modèle réduit" for uranium mineralization, as it displays many features characteristic of unconformity type deposits. The Midwest Trend comprises three mineral leases that encompass two uranium deposits, the Midwest Main and Midwest A (Allen et al., 2017a, b). Mineralization occurs along a NE-trending graphitic structure, and is hosted by the sandstone, at the unconformity, and in much lesser amounts in the underlying basement rocks. Petrographic observations aided by the use of RAMAN spectroscopy and SEM-EDS, have been used to create a paragenetic sequence of mineralization (Fig.1). Future work will focus on fluid inclusion studies using microthermometry, LA-ICP-MS, and mass spectrometry of contained gases. References:Allen, T., Quirt, D., Masset, O. (2017a). Midwest A Uranium Deposit, Midwest Property, Northern Mining District, Saskatchewan, NTS Map Area 741/8: 2017 Mineral Resource Technical Report. AREVA Resources Canada Inc. Internal Report No. 17-CND-33-01. Allen, T., Quirt, D., Masset, O. (2017b). Midwest Main Uranium Deposit, Midwest Property, Northern Mining District, Saskatchewan, NTS Map Area 741/8: 2017 Mineral Resource Technical Report. AREVA Resources Canada Inc. Internal Report No. 17-CND-33-01. Jefferson, C.W., Thomas, D.J., Gandhi, S.S., Ramaekers, P., Delaney, G., Brisbin, D., Cutts, C., Portella, P., and Olson, R.A., 2007: Unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin 588, p. 23–67.


2020 ◽  
pp. geochem2020-030
Author(s):  
Dillon Johnstone ◽  
Kathryn Bethune ◽  
Colin Card ◽  
Victoria Tschirhart

The Patterson Lake corridor is situated along the southwest margin of the Athabasca Basin and contains several basement-hosted uranium deposits and prospects. Drill core investigations during this study have determined that granite, granodiorite, mafic and alkali intrusive basement rocks are entrained in a deep-seated northeast-striking subvertical heterogeneous high-strain zone defined by anastomosing ductile to semi-brittle shears and brittle faults. The earliest phases of ductile deformation (D1/2), linked with Taltson (1.94–1.92 Ga) orogenesis, involved interference between early fold sets (F1/2) and development of an associated ductile transposition foliation (S1/2). During subsequent Snowbird (ca. 1.91–1.90 Ga) tectonism, this composite foliation was re-folded (D3) by northeast-trending buckle-style folds (F3), including a regional fold centered on the Clearwater aeromagnetic high. In continuum with D3, a network of dextral-reverse chloritic-graphitic shears, with C-S geometry, formed initially (D4a) and progressed to more discrete, spaced semi-brittle structures (D4b; ca. 1.900–1.819 Ga). Basin development (D5a; <ca. 1.819 Ga) was marked by a set of north-striking normal faults and related east- and northeast-striking transfer faults that accommodated subsidence. Primary uranium mineralization (D5b; ∼1.45 Ga) was facilitated by brittle reactivation of northeast-striking basement shears in response to west-southwest - east-northeast-directed compressional stress (σ1). Uraninite was emplaced along σ1-parallel extension fractures and dilational zones formed at linkages between northeast- and east-northeast-striking dextral strike-slip faults. Uranium remobilization (D5c) occurred after σ1 shifted to west-northwest – east-southeast, giving rise to regional east- and southeast-striking conjugate faults, along which mafic dykes (1.27 Ga and 1.16 Ga) intruded.Thematic collection: This article is part of the Uranium Fluid Pathways collection available at: https://www.lyellcollection.org/cc/uranium-fluid-pathways


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-30
Author(s):  
Antonio Benedicto ◽  
Maher Abdelrazek ◽  
Patrick Ledru ◽  
Cameron MacKay ◽  
Dwayne Kinar

The occurrence of unconformity-related uranium mineralization requires the combination of three components: fluids with the right composition, geochemical traps with the right agents that produce precipitation, and structural traps with the right geometry. In the Athabasca Basin unconformity-related uranium deposits, while basinal brines are commonly accepted as the principal mineralized fluids and graphite and gases (CH4, CO2, and H2S) are well known as the reductants, only few case studies describing structural traps are published. A number of recent works, including numerical modelling, have improved the understanding of the role of inherited shear zones on fluid flow and the development of uranium deposits at a micro- and regional-scale. Nevertheless, there is still a lack of knowledge about the meso- or deposit-scale structural controls that lead to the present (and potentially predictive) localization of uranium deposits along a given shear zone. The present work examines new structural data from drill holes and deals with (i) the identification of mesoscale structural traps that lead to the formation of the Athabasca unconformity-related uranium deposits hosted within the basement and (ii) with the understanding of the role and mode of reactivation of the inherited shear zones. The Sue deposits (McClean Project), the Tri-Island showing (Martin Lake Project) in the Eastern Athabasca, and the Spitfire prospect (Hook Lake Project) in the Western Athabasca have been selected for a detailed analysis of structures and related uranium mineralization. The structural analysis performed brings new insights about the mesoscale structural controls, the role the inherited ductile fabric had on the mode of brittle reactivation and to trap mineralization, and the tectonic regime to which basement-hosted uranium deposits may be associated in the Athabasca Basin.


2020 ◽  
Vol 57 (11) ◽  
pp. 1312-1323
Author(s):  
Brandi M. Shabaga ◽  
Mostafa Fayek ◽  
David Quirt ◽  
Patrick Ledru

The Thelon Basin is temporally and spatially related to the Athabasca Basin in Saskatchewan, Canada, which hosts the highest-grade unconformity-related uranium deposits in the world. Several uranium deposits occur within the Aberdeen sub-basin of the Thelon Basin, and it has been suggested that they may also be unconformity-related deposits. However, the genesis of the deposits is still debated and the age of the uranium mineralization event remains loosely constrained. In this study, we use secondary ion mass spectrometry to measure three sulphur (S) isotopes in pyrite from the Kiggavik deposit to constrain the sources of sulphur. We use this information to determine whether these sulphides, if dated by the Re–Os method, would provide a better constraint on the timing of uranium mineralization. The Kiggavik deposit comprises three zones (Main, Centre, and East) that formed from ∼200 °C fluids at ∼1600 Ma. Non-hydrothermal pyrite and galena from all three zones have a wide range of δ34S values, from −41.2‰ to +37.4‰. The Δ33S values (>0‰) indicate recycling of mass independent fractionation sulphur, suggesting that pyrite from the Kiggavik deposit derived sulphur from the Neoarchean metagraywacke host rock. The preservation of these anomalous Δ33S values suggests that the pyrite formed from low-temperature processes rather than hydrothermal processes. Low-temperature, high-latitude fluids may have been involved in the formation of the pyrite because some of these sulphides are also associated with uranium minerals that are devoid of Pb and contain corroded calcite. Based on these data, Re–Os geochronology of these sulphides would not yield an age that would constrain the timing of hydrothermal uranium mineralization.


Author(s):  
E. Adlakha ◽  
K. Hattori

Basement rocks below the Athabasca Basin, Saskatchewan, have been intensely altered through paleoweathering and multiple hydrothermal events, including the formation of world-class unconformity-type uranium deposits. Here, we demonstrate the utility of Ti-oxide thermochronology for identifying thermotectonic events in these altered rocks leading to uranium mineralization along basement structures. Rutile grains along the P2 fault, a major fault in the eastern Athabasca Basin, exhibit 207Pb/206Pb ages of ca. 1850−1700 Ma, with a weighted mean of 1757 ± 6 Ma (mean square of weighted deviation [MSWD] = 1.4, n = 116). The older ages (&gt;1770 Ma) record regional metamorphism reaching a temperature of 875 °C during the Trans-Hudson orogeny. Pb diffusion modeling indicates that metamorphic rutile should exhibit cooling ages of 1760−1750 Ma. Rutile grains showing young ages, &lt;1750 Ma, reflect isotopic resetting during regional asthenospheric upwelling between 1770 and 1730 Ma related to the emplacement of the Kivalliq igneous suite to the north. This thermotectonic event (temperature &gt; 550 °C) promoted hydrothermal activity to produce silicified rocks, i.e., “quartzite,” along the P2 fault, which later focused mineralizing fluids for unconformity-type uranium deposits. The young rutile ages also indicate that the basement rocks remained hot until 1700 Ma, providing the maximum age for the deposition of the Athabasca sediments. Anatase yields a concordia age of 1569 ± 31 Ma (MSWD = 0.30, n = 5), which is within uncertainty of the oldest ages for uraninite of the McArthur River deposit. This age corresponds to the incursion of basinal fluids in the basement along the P2 fault during uranium mineralization.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Dong Huang ◽  
Yan-Qing Liu ◽  
Li-Shuang Liang ◽  
Xue-Wu Lin ◽  
Tao Song ◽  
...  

At present, there are many constantly updated guidelines and consensuses on the diagnosis and treatment of osteoarthritis both at home and abroad. The recommendations established using methods of evidence-based medicine has experienced strict research on controlling bias and promoting reproduction rate. As a result, the previous evidence was reevaluated, and a lot of changes were provoked in the diagnosis and treatment concept of osteoarthritis. However, several methods not recommended by foreign guidelines are still in use in the current clinical practice in China. On the one hand, Chinese experts have not reached extensive consensus on whether it is necessary to make changes according to foreign guidelines. On the other hand, almost all the current relevant guidelines are on osteoarthritis, but the lesions around knee joints which, as a whole, bear the largest weight in human body, cannot be ignored. For this purpose, Chinese Association for the Study of Pain (CASP) organized some leading experts to formulate this Chinese Pain Specialist Consensus on the diagnosis and treatment of degenerative knee osteoarthritis (DKOA) in combination with the guidelines in foreign countries and the expert experience of clinical practice in China. The consensus, which includes the definition, pathophysiology, epidemiology, clinical manifestation, diagnostic criteria, and treatments of DKOA, is intended to be used by first-line doctors, including pain physicians to manage patients with DKOA.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 835
Author(s):  
Jose Alvarez ◽  
Elvira Martinez ◽  
Belén Diezma

Hyperspectral imaging is an appropriate method to thoroughly investigate the microscopic structure of internally heterogeneous agro-food products. By using hyperspectral technology, identifying stress symptoms associated with salinity, before a human observer, is possible, and has obvious benefits. The objective of this paper was to prove the suitability of this technique for the analysis of Triticale seeds subjected to both magneto-priming and drought and salt stress conditions, in terms of image differences obtained among treatments. It is known that, on the one hand, drought and salt stress treatments have negative effects on seeds of almost all species, and on the other hand, magneto-priming enhances seed germination parameters. Thus, this study aimed to relate hyperspectral imaging values—neither positive nor negative in themselves—to the effects mentioned above. Two main conclusions were reached: Firstly, the hyperspectral application is a feasible method for exploring the Triticale structure and for making distinctions under different drought and salt stress treatments, in line with the data variability obtained. Secondly, the lower spectral reflectance in some treatments—in the 400–1000 nm segment—is the result of a great number of chemical compounds in the seed that could be related to magneto-priming.


2003 ◽  
Vol 80 (2-3) ◽  
pp. 241-258 ◽  
Author(s):  
G Lorilleux ◽  
M Cuney ◽  
M Jébrak ◽  
J.C Rippert ◽  
P Portella

Sign in / Sign up

Export Citation Format

Share Document