scholarly journals Application of Hyperspectral Imaging in the Assessment of Drought and Salt Stress in Magneto-Primed Triticale Seeds

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 835
Author(s):  
Jose Alvarez ◽  
Elvira Martinez ◽  
Belén Diezma

Hyperspectral imaging is an appropriate method to thoroughly investigate the microscopic structure of internally heterogeneous agro-food products. By using hyperspectral technology, identifying stress symptoms associated with salinity, before a human observer, is possible, and has obvious benefits. The objective of this paper was to prove the suitability of this technique for the analysis of Triticale seeds subjected to both magneto-priming and drought and salt stress conditions, in terms of image differences obtained among treatments. It is known that, on the one hand, drought and salt stress treatments have negative effects on seeds of almost all species, and on the other hand, magneto-priming enhances seed germination parameters. Thus, this study aimed to relate hyperspectral imaging values—neither positive nor negative in themselves—to the effects mentioned above. Two main conclusions were reached: Firstly, the hyperspectral application is a feasible method for exploring the Triticale structure and for making distinctions under different drought and salt stress treatments, in line with the data variability obtained. Secondly, the lower spectral reflectance in some treatments—in the 400–1000 nm segment—is the result of a great number of chemical compounds in the seed that could be related to magneto-priming.

2021 ◽  
Vol 9 (6) ◽  
pp. 1209
Author(s):  
Nuria Montes-Osuna ◽  
Carmen Gómez-Lama Cabanás ◽  
Antonio Valverde-Corredor ◽  
Garikoitz Legarda ◽  
Pilar Prieto ◽  
...  

Stress caused by drought and salinity may compromise growth and productivity of olive (Olea europaea L.) tree crops. Several studies have reported the use of beneficial rhizobacteria to alleviate symptoms produced by these stresses, which is attributed in some cases to the activity of 1-aminocyclopropane-1-carboxylic acid deaminase (ACD). A collection of beneficial olive rhizobacteria was in vitro screened for ACD activity. Pseudomonas sp. PICF6 displayed this phenotype and sequencing of its genome confirmed the presence of an acdS gene. In contrast, the well-known root endophyte and biocontrol agent Pseudomonas simiae PICF7 was defective in ACD activity, even though the presence of an ACD-coding gene was earlier predicted in its genome. In this study, an unidentified deaminase was confirmed instead. Greenhouse experiments with olive ‘Picual’ plants inoculated either with PICF6 or PICF7, or co-inoculated with both strains, and subjected to drought or salt stress were carried out. Several physiological and biochemical parameters increased in stressed plants (i.e., stomatal conductance and flavonoids content), regardless of whether or not they were previously bacterized. Results showed that neither PICF6 (ACD positive) nor PICF7 (ACD negative) lessened the negative effects caused by the abiotic stresses tested, at least under our experimental conditions.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 226 ◽  
Author(s):  
Richard Odongo Magwanga ◽  
Pu Lu ◽  
Joy Nyangasi Kirungu ◽  
Qi Dong ◽  
Xiaoyan Cai ◽  
...  

We identified 672, 374, and 379 CYPs proteins encoded by the CYPs genes in Gossypium hirsutum, Gossypium raimondii, and Gossypium arboreum, respectively. The genes were found to be distributed in all 26 chromosomes of the tetraploid cotton, with chrA05, chrA12, and their homeolog chromosomes harboring the highest number of genes. The physiochemical properties of the proteins encoded by the CYP450 genes varied in terms of their protein lengths, molecular weight, isoelectric points (pI), and even grand hydropathy values (GRAVY). However, over 99% of the cotton proteins had GRAVY values below 0, which indicated that the majority of the proteins encoded by the CYP450 genes were hydrophilic in nature, a common property of proteins encoded by stress-responsive genes. Moreover, through the RNA interference (RNAi) technique, the expression levels of Gh_D07G1197 and Gh_A13G2057 were suppressed, and the silenced plants showed a higher concentration of hydrogen peroxide (H2O2) with a significant reduction in the concentration levels of glutathione (GSH), ascorbate peroxidase (APX), and proline compared to the wild types under drought and salt stress conditions. Furthermore, the stress-responsive genes 1-Pyrroline–5-Carboxylate Synthetase (GhP5CS), superoxide dismutase (GhSOD), and myeloblastosis (GhMYB) were downregulated in VIGS plants, but showed upregulation in the leaf tissues of the wild types under drought and salt stress conditions. In addition, CYP450-silenced cotton plants exhibited a high level of oxidative injury due to high levels of oxidant enzymes, in addition to negative effects on CMS, ELWL, RLWC, and chlorophyll content The results provide the basic foundation for future exploration of the proteins encoded by the CYP450 genes in order to understand the physiological and biochemical mechanisms in enhancing drought and salt stress tolerance in plants.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jingjing Chang ◽  
Yanliang Guo ◽  
Jingyi Yan ◽  
Zixing Zhang ◽  
Li Yuan ◽  
...  

AbstractMelatonin is a pleiotropic signaling molecule that regulates plant growth and responses to various abiotic stresses. The last step of melatonin synthesis in plants can be catalyzed by caffeic acid O-methyltransferase (COMT), a multifunctional enzyme reported to have N-acetylserotonin O-methyltransferase (ASMT) activity; however, the ASMT activity of COMT has not yet been characterized in nonmodel plants such as watermelon (Citrullus lanatus). Here, a total of 16 putative O-methyltransferase (ClOMT) genes were identified in watermelon. Among them, ClOMT03 (Cla97C07G144540) was considered a potential COMT gene (renamed ClCOMT1) based on its high identities (60.00–74.93%) to known COMT genes involved in melatonin biosynthesis, expression in almost all tissues, and upregulation under abiotic stresses. The ClCOMT1 protein was localized in the cytoplasm. Overexpression of ClCOMT1 significantly increased melatonin contents, while ClCOMT1 knockout using the CRISPR/Cas-9 system decreased melatonin contents in watermelon calli. These results suggest that ClCOMT1 plays an essential role in melatonin biosynthesis in watermelon. In addition, ClCOMT1 expression in watermelon was upregulated by cold, drought, and salt stress, accompanied by increases in melatonin contents. Overexpression of ClCOMT1 enhanced transgenic Arabidopsis tolerance against such abiotic stresses, indicating that ClCOMT1 is a positive regulator of plant tolerance to abiotic stresses.


1997 ◽  
Vol 122 (1) ◽  
pp. 43-46 ◽  
Author(s):  
A.M. Abou El-Khashab ◽  
A.F. El-Sammak ◽  
A.A. Elaidy ◽  
M.I. Salama ◽  
M. Rieger

One-year-old rooted cuttings of `Nemaguard' peach [Prunus persica (L.) Batsch.] were irrigated with 0, 1000, or 2000 mg·L-1 salts under greenhouse conditions to study the effect of foliar paclobutrazol (PBZ) application on salt stress response. Salinity reduced growth of nontreated plants by ≈60%, but only by ≈30% for PBZ-treated plants. PBZ-treated plants also had less defoliation and fewer leaves per plant showing salt stress symptoms, and had higher rates of leaf gas exchange than nontreated plants. PBZ application generally reduced Na+ and Cl- contents in leaves, roots, and stems, regardless of salt treatment. Furthermore, total Na+ per plant in PBZ-treated plants was about half that found in nontreated plants, although total Cl- per plant was reduced by PBZ in only one of two salt treatments. The data suggested that PBZ promoted salt stress avoidance in peach by reducing the uptake and accumulation of harmful Na+ and Cl- ions in plant tissues.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1749
Author(s):  
Samuel Aduse Poku ◽  
Peter Nkachukwu Chukwurah ◽  
Htut Htet Aung ◽  
Ikuo Nakamura

Climate change, with its attendant negative effects, is expected to hamper agricultural production in the coming years. To counteract these negative effects, breeding of environmentally resilient plants via conventional means and genetic engineering is necessary. Stress defense genes are valuable tools by which this can be achieved. Here we report the successful cloning and functional characterization of a melon Y3SK2-type dehydrin gene, designated as CmLEA-S. We generated CmLEA-S overexpressing transgenic tobacco lines and performed in vitro and in vivo drought and salt stress analyses. Seeds of transgenic tobacco plants grown on 10% polyethylene glycol (PEG) showed significantly higher germination rates relative to wild-type seeds. In the same way, transgenic seeds grown on 150 mM sodium chloride (NaCl) recorded significantly higher germination percentages compared with wild-type plants. The fresh weights and root lengths of young transgenic plants subjected to drought stress were significantly higher than that of wild-type plants. Similarly, the fresh weights and root lengths of transgenic seedlings subjected to salt stress treatments were also significantly higher than wild-type plants. Moreover, transgenic plants subjected to drought and salt stresses in vivo showed fewer signs of wilting and chlorosis, respectively. Biochemical assays revealed that transgenic plants accumulated more proline and less malondialdehyde (MDA) compared with wild-type plants under both drought and salt stress conditions. Finally, the enzymatic activities of ascorbate peroxidase (APX) and catalase (CAT) were enhanced in drought- and salt-stressed transgenic lines. These results suggest that the CmLEA-S gene could be used as a potential candidate gene for crop improvement.


2020 ◽  
Vol 71 (1) ◽  
pp. 192-200
Author(s):  
Anca-Luiza Stanila ◽  
Catalin Cristian Simota ◽  
Mihail Dumitru

Highlighting the sandy soil of Oltenia Plain calls for a better knowledge of their variability their correlation with major natural factors from each physical geography. Pedogenetic processes specific sandy soils are strongly influenced by nature parent material. This leads, on the one hand, climate aridity of the soil due to strong heating and accumulation of small water reserves, consequences emphasizing the moisture deficit in the development of the vegetation and favoring weak deflation, and on the other hand, an increase in mineralization organic matter. Relief under wind characteristic sandy land, soil formation and distribution has some particularly of flat land with the land formed on the loess. The dune ridges are less evolved soils, profile underdeveloped and poorly supplied with nutrients compared to those on the slopes of the dunes and the interdune, whose physical and chemical properties are more favorable to plant growth.Both Romanati Plain and the Blahnita (Mehedinti) Plain and Bailesti Plain, sand wind shaped covering a finer material, loamy sand and even loess (containing up to 26% clay), also rippled with negative effects in terms of overall drainage. Depending on the pedogenetic physical and geographical factors that have contributed to soil cover, in the researched were identified following classes of soils: protisols, cernisols, cambisols, luvisols, hidrisols and antrosols.Obtaining appropriate agricultural production requires some land improvement works (especially fitting for irrigation) and agropedoameliorative works. Particular attention should be paid to preventing and combating wind erosion.


Author(s):  
Mark Bovens ◽  
Anchrit Wille

Lay politics lies at the heart of democracy. Political offices are the only offices for which no formal qualifications are required. Contemporary political practices are diametrically opposed to this constitutional ideal. Most contemporary democracies in Western Europe are diploma democracies—ruled by those with the highest formal qualifications. Citizens with low or medium educational qualification levels currently make up about 70 per cent of the electorates, yet they have become virtually absent from almost all political arenas. University graduates have come to dominate all relevant political institutions and venues, from political parties, parliaments and cabinets, to organized interests, deliberative settings, and internet consultations. This rise of a political meritocracy is part of larger trend. In the information society, educational background, like class, or religion, is an important source of social and political divides. Those who are well educated tend to be cosmopolitans, whereas the lesser educated citizens are more likely to be nationalists. This book documents the context, contours, and consequences of this rise of a political meritocracy. It explores the domination of higher educated citizens in political participation, civil society, and political office in Western Europe. It discusses the consequences of this rise of political meritocracy, such as descriptive deficits, policy incongruences, biased standards, and cynicism and distrust. Also, it looks at ways to remedy, or at least mitigate, some of the negative effects of diploma democracy.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Dong Huang ◽  
Yan-Qing Liu ◽  
Li-Shuang Liang ◽  
Xue-Wu Lin ◽  
Tao Song ◽  
...  

At present, there are many constantly updated guidelines and consensuses on the diagnosis and treatment of osteoarthritis both at home and abroad. The recommendations established using methods of evidence-based medicine has experienced strict research on controlling bias and promoting reproduction rate. As a result, the previous evidence was reevaluated, and a lot of changes were provoked in the diagnosis and treatment concept of osteoarthritis. However, several methods not recommended by foreign guidelines are still in use in the current clinical practice in China. On the one hand, Chinese experts have not reached extensive consensus on whether it is necessary to make changes according to foreign guidelines. On the other hand, almost all the current relevant guidelines are on osteoarthritis, but the lesions around knee joints which, as a whole, bear the largest weight in human body, cannot be ignored. For this purpose, Chinese Association for the Study of Pain (CASP) organized some leading experts to formulate this Chinese Pain Specialist Consensus on the diagnosis and treatment of degenerative knee osteoarthritis (DKOA) in combination with the guidelines in foreign countries and the expert experience of clinical practice in China. The consensus, which includes the definition, pathophysiology, epidemiology, clinical manifestation, diagnostic criteria, and treatments of DKOA, is intended to be used by first-line doctors, including pain physicians to manage patients with DKOA.


Author(s):  
Yu Li ◽  
Hao Chen ◽  
Shengting Li ◽  
Cuiling Yang ◽  
Qunying Ding ◽  
...  

2020 ◽  
Vol 21 (6) ◽  
pp. 2177 ◽  
Author(s):  
Bo Li ◽  
Jia-Cheng Zheng ◽  
Ting-Ting Wang ◽  
Dong-Hong Min ◽  
Wen-Liang Wei ◽  
...  

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


Sign in / Sign up

Export Citation Format

Share Document