Introduction of imidazolinone herbicide and Clearfield® rice between weedy rice—control efficiency and environmental concerns

2018 ◽  
Vol 26 (2) ◽  
pp. 181-198 ◽  
Author(s):  
Mahyoub Izzat Bzour ◽  
Fathiah Mohamed Zuki ◽  
Muhamad Shakirin Mispan

Water scarcity and increasing labor costs of rice cultivation have prompted many agro-ecosystems in the world to adopt the direct-seeded rice (DSR) method instead of the hand-transplanting method. However, there is a downside to this approach, which is the prevalence and spread of weedy rice (WR), a troublesome weed in paddy fields that has the potential to cause a 90% loss of total yield in high-infested areas. The progression, infestation, and dynamics of WR are linked to environmental circumstances, types of rice cultivar, established techniques, and field management. WR is viewed as a critical problem, as it may prove counterproductive in rice cultivation because it causes an overall increase in the production cost of paddy harvesting. For the purpose of our discussion, a method is explored that can be used to eliminate, or at least mitigate, the spread of WR, which is the Clearfield® Production System (CPS). This method consists of imidazolinone (IMI) herbicide, Clearfield® certified seeds, and the Stewardship Guide. However, use of the CPS has been known to negatively affect the environment, as it transfers resistance traits to WR, increasing IMI persistence in the cultivated soils, and contaminating soils and water with herbicide residues. These negative environmental effects could be dealt with by using integrated weed management systems (IWMS) that include the use of all viable tools and should be incorporated with the proper Stewardship Guide to reduce the growth of herbicide-resistant WR. This review aims to elucidate information pertaining to WR infestation, the characteristics thereof, sustainable techniques for WR control, IMI herbicides, and diverse methods for the extraction and determination of IMI residues in the environment. Understanding the conspecific nature of WR serves as a baseline for constructing novel WR control strategies in the future.

2018 ◽  
Vol 36 (0) ◽  
Author(s):  
M. DILIPKUMAR ◽  
N.R. BURGOS ◽  
T.S. CHUAH ◽  
S. ISMAIL

ABSTRACT: The Clearfield® rice production system is an effective management tool for weedy rice and other weeds in the direct-seeded rice culture. However, if farmers cultivating the Clearfield® rice disregard stewardship recommendations, the industry could face a problem of herbicide-resistant weedy rice which would occur through the selection of outcrosses. This study aimed to confirm imidazolinone-resistant weedy rice in Malaysia. The resistant weedy rice (R-WR) was found to be 67 fold more resistant to OnDuty® (premix of imazapic and imazapyr) than the susceptible weedy rice (S-WR) based on the GR50 values (rate that causes 50% inhibition of shoot growth). The Clearfield® rice cultivar was 32-fold more tolerant to OnDuty® than the S-WR. Furthermore, the R-WR was 54 and 89 fold more resistant to imazapic and imazapyr applied separately than the S-WR, respectively. The Clearfield® rice was 140- and 40-fold more tolerant to imazapic and imazapyr, respectively than the S-WR. The R-WR biotype was susceptible to non-selective herbicides glyphosate and glufosinate, as well as the selective graminicide quizalofop. Oxadiazon controlled the R-WR biotype, but pretilachlor was ineffective. The present study documented the first case of weedy rice that was cross-resistant to imazapic and imazapyr in Malaysian Clearfield® rice field.


2021 ◽  
Vol 32 (4) ◽  
pp. 151-157
Author(s):  
Raven A. Bough ◽  
Phillip Westra ◽  
Todd A. Gaines ◽  
Eric P. Westra ◽  
Scott Haley ◽  
...  

The authors discuss the importance of wheat as a global food source and describe a novel multi-institutional, public-private partnership between Colorado State University, the Colorado Wheat Research Foundation, and private chemical and seed companies that resulted in the development of a new herbicide-resistant wheat production system.


2005 ◽  
Vol 75 (4) ◽  
pp. 79-84 ◽  
Author(s):  
D. Shaner

Some of the first products of biotechnology to reach the marketplace have been herbicide-resistant crops. Industry sees the development of herbicide-resistant varieties as a way to increase the availability of proven herbicides for a broader range of crops. However, the development of herbicide- resistant crops requires special attention to potential environmental questions such as herbicide usage, selection of resistant weed biotypes and spread of resistance from the resistant crop to wild species. Industry is actively addressing these concerns during the process of development. Proper development and use of herbicide-resistant crops in integrated weed management programs will provide farmers with increased flexibility, efficiency, and decreased cost in their weed control practices without increasing the risk of herbicide-resistant weeds. Furthermore, herbicide-resistant crops should prove to be valuable tools in managing herbicide- resistant weeds.


2021 ◽  
Vol 32 (5) ◽  
pp. 203-207
Author(s):  
M. Alejandro Garcia ◽  
Lucia V. Meneses ◽  
Tiago Edu Kaspary

Uruguayan agriculture has undergone dramatic changes in the last 50 years driven by the adoption of new agricultural production systems that incorporate zero tillage and herbicide resistant crops. This has resulted in a shift in weed species frequencies and the dispersion of introduced herbicide resistant weed populations. Finally, integrated weed management tools are being developed by research and extension services to manage herbicide-resistant (HR) weeds better and to reduce environmental impact of herbicides.


2004 ◽  
Vol 18 (4) ◽  
pp. 1006-1012 ◽  
Author(s):  
K. Neil Harker ◽  
George W. Clayton ◽  
John T. O'Donovan ◽  
Robert E. Blackshaw ◽  
F. Craig Stevenson

Herbicide-resistant canola dominates the canola market in Canada. A multiyear field experiment was conducted at three locations to investigate the effect of time of weed removal (two-, four-, or six-leaf canola) and herbicide rate (50 or 100% recommended) in three herbicide-resistant canola systems. Weeds were controlled in glufosinate-resistant canola (GLU) with glufosinate, in glyphosate-resistant canola (GLY) with glyphosate, and in imidazolinone-resistant canola (IMI) with a 50:50 mixture of imazamox and imazethapyr. Canola yields were similar among the three canola cultivar–herbicide systems. Yields were not influenced by 50 vs. 100% herbicide rates. Timing of weed removal had the greatest effect on canola yield, with weed removal at the four-leaf stage giving the highest yields in most cases. Percent dockage was often greater for GLU and IMI than for GLY. In comparison with the other treatments, dockage levels doubled for GLU after application at 50% herbicide rates. The consistency of monocot weed control was usually greater for GLY than for GLU or IMI systems. However, weed biomass data revealed no differences in dicot weed control consistency between IMI and GLY systems. Greater dockage and weed biomass variability after weed removal at the six-leaf stage or after low herbicide rates suggests higher weed seed production, which could constrain the adoption of integrated weed management practices in subsequent years.


Weed Science ◽  
2016 ◽  
Vol 64 (SP1) ◽  
pp. 641-648 ◽  
Author(s):  
Claudio Rubione ◽  
Sarah M. Ward

The evolution of herbicide-resistant weeds is a major concern in the corn- and soybean-producing Pampas region of Argentina, where growers predominantly plant glyphosate-resistant crop varieties and depend heavily on glyphosate for weed control. Currently, 16 weed species in Argentina are resistant to one or more of three different herbicide mechanisms of action, and resistant weed populations continue to increase, posing a serious threat to agricultural production. Implementation of integrated weed management to address herbicide resistance faces significant barriers in Argentina, especially current land ownership and rental patterns in the Pampas. More than 60% of Pampas cropland is rented to tenants for periods that rarely exceed 1 yr, resulting in crop rotation being largely abandoned, and crop export taxes and quotas have further discouraged wheat and corn production in favor of continuous soybean production. In this paper we discuss ways to facilitate new approaches to weed management in Argentina, including legal and economic reforms and the formation of a national committee of stakeholders from public and private agricultural sectors.


2018 ◽  
Vol 32 (3) ◽  
pp. 244-250 ◽  
Author(s):  
Taïga B. Cholette ◽  
Nader Soltani ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
Peter H. Sikkema

AbstractGlyphosate-resistant (GR) and multiple herbicide–resistant (groups 2 and 9) Canada fleabane have been confirmed in 30 and 23 counties in Ontario, respectively. The widespread incidence of herbicide-resistant Canada fleabane highlights the importance of developing integrated weed management strategies. One strategy is to suppress Canada fleabane using cover crops. Seventeen different cover crop monocultures or polycultures were seeded after winter wheat harvest in late summer to determine GR Canada fleabane suppression in corn grown the following growing season. All cover crop treatments seeded after wheat harvest suppressed GR Canada fleabane in corn the following year. At 4 wk after cover crop emergence (WAE), estimated cover crop ground cover ranged from 31% to 68%, a density of 124 to 638 plants m–2, and a range of biomass from 29 to 109 g m–2, depending on cover crop species. All of the cover crop treatments suppressed GR Canada fleabane in corn grown the following growing season from May to September compared to the no cover crop control. Among treatments evaluated, annual ryegrass (ARG), crimson clover (CC)/ARG, oilseed radish (OSR)/CC/ARG, and OSR/CC/cereal rye (CR) were the best treatments for the suppression of GR Canada fleabane in corn. ARG alone or in combination with CC provided the most consistent GR Canada fleabane suppression, density reduction, and biomass reduction in corn. Grain corn yields were not affected by the use of the cover crops evaluated for Canada fleabane suppression.


Weed Science ◽  
2013 ◽  
Vol 61 (2) ◽  
pp. 171-184 ◽  
Author(s):  
Jenny Kao-Kniffin ◽  
Sarah M. Carver ◽  
Antonio DiTommaso

Global occurrences of herbicide resistant weed populations have increased the demand for development of new herbicides targeting novel mechanisms of action. Metagenomic approaches to natural drug discovery offer potential for isolating weed suppressive compounds from microorganisms. In past research, traditional techniques entailed isolating compounds from living organisms, whereas metagenomic approaches involve extracting fragments of DNA from soil and exploring for compounds of interest produced by the transformed hosts. Several herbicidal compounds have been isolated from soil bacteria through culturing methods and have led to the development of popular herbicides, such as glufosinate. In this review, we discuss the emergence of metagenomic approaches for weed management in the context of natural product discovery using traditional culture-dependent isolation and the more recent culture-independent methods. The same techniques can be used to isolate herbicide resistance genes. Adoption of metagenomic approaches in pest management research can lead to novel control strategies in cropping and landscape systems.


Sign in / Sign up

Export Citation Format

Share Document