scholarly journals Integrated Weed Management for Large Scale Direct Seeding Hybrid Rice Cultivation at Irrigated Land in Indonesia

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1264
Author(s):  
Nitika Sandhu ◽  
Shailesh Yadav ◽  
Vikas Kumar Singh ◽  
Arvind Kumar

Paddy production through conventional puddled system of rice cultivation (PTR) is becoming more and more unsustainable—economically and environmentally—as this method is highly resource intensive and these resources are increasingly becoming scarce, and consequently, expensive. The ongoing large-scale shift from puddled system of rice cultivation PTR to direct seeded rice (DSR) necessitates a convergence of breeding, agronomic and other approaches for its sustenance and harnessing natural resources and environmental benefits. Current DSR technology is largely based on agronomic interventions applied to the selected varieties of PTR. In DSR, poor crop establishment due to low germination, lack of DSR-adapted varieties, high weed-nematode incidences and micronutrient deficiency are primary constraints. The approach of this review paper is to discuss the existing evidences related to the DSR technologies. The review highlights a large number of conventionally/molecularly characterized strains amenable to rapid transfer and consolidation along with agronomic refinements, mechanization and water-nutrient-weed management strategies to develop a complete, ready to use DSR package. The review provides information on the traits, donors, genes/QTL needed for DSR and the available DSR-adapted breeding lines. Furthermore, the information is supplemented with a discussion on constrains and needed policies in scaling up the DSR adoption.


2020 ◽  
Vol 259 ◽  
pp. 107961
Author(s):  
P. Panneerselvam ◽  
Virender Kumar ◽  
Narayan Chandra Banik ◽  
Vivek Kumar ◽  
Nabakishore Parida ◽  
...  

2018 ◽  
Vol 26 (2) ◽  
pp. 181-198 ◽  
Author(s):  
Mahyoub Izzat Bzour ◽  
Fathiah Mohamed Zuki ◽  
Muhamad Shakirin Mispan

Water scarcity and increasing labor costs of rice cultivation have prompted many agro-ecosystems in the world to adopt the direct-seeded rice (DSR) method instead of the hand-transplanting method. However, there is a downside to this approach, which is the prevalence and spread of weedy rice (WR), a troublesome weed in paddy fields that has the potential to cause a 90% loss of total yield in high-infested areas. The progression, infestation, and dynamics of WR are linked to environmental circumstances, types of rice cultivar, established techniques, and field management. WR is viewed as a critical problem, as it may prove counterproductive in rice cultivation because it causes an overall increase in the production cost of paddy harvesting. For the purpose of our discussion, a method is explored that can be used to eliminate, or at least mitigate, the spread of WR, which is the Clearfield® Production System (CPS). This method consists of imidazolinone (IMI) herbicide, Clearfield® certified seeds, and the Stewardship Guide. However, use of the CPS has been known to negatively affect the environment, as it transfers resistance traits to WR, increasing IMI persistence in the cultivated soils, and contaminating soils and water with herbicide residues. These negative environmental effects could be dealt with by using integrated weed management systems (IWMS) that include the use of all viable tools and should be incorporated with the proper Stewardship Guide to reduce the growth of herbicide-resistant WR. This review aims to elucidate information pertaining to WR infestation, the characteristics thereof, sustainable techniques for WR control, IMI herbicides, and diverse methods for the extraction and determination of IMI residues in the environment. Understanding the conspecific nature of WR serves as a baseline for constructing novel WR control strategies in the future.


2016 ◽  
Vol 30 (4) ◽  
pp. 22
Author(s):  
Abhinandan Singh ◽  
Pankaj Kumar Ojha

2018 ◽  
Vol 25 (2) ◽  
pp. 268-286 ◽  
Author(s):  
Maurizio Vurro ◽  
Angela Boari ◽  
Francesca Casella ◽  
Maria Chiara Zonno

Fungal phytotoxins are natural secondary metabolites produced by plant pathogenic fungi during host–pathogen interactions. They have received considerable particular attention for elucidating disease etiology, and consequently to design strategies for disease control. Due to wide differences in their chemical structures, these toxic metabolites have different ecological and environmental roles and mechanisms of action. This review aims at summarizing the studies on the possible use of these metabolites as tools in biological and integrated weed management, e.g. as: novel and environmentally friendly herbicides; lead for novel compounds; sources of novel mechanisms of action. Moreover, the limiting factors for utilizing those metabolites in practice will also be briefly discussed.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1495
Author(s):  
Muhammad Javaid Akhter ◽  
Bo Melander ◽  
Solvejg Kopp Mathiassen ◽  
Rodrigo Labouriau ◽  
Svend Vendelbo Nielsen ◽  
...  

Vulpia myuros has become an increasing weed problem in winter cereals in Northern Europe. However, the information about V. myuros and its behavior as an arable weed is limited. Field and greenhouse experiments were conducted in 2017/18 and 2018/19, at the Department of Agroecology in Flakkebjerg, Denmark to investigate the emergence, phenological development and growth characteristics of V. myuros in monoculture and in mixture with winter wheat, in comparison to Apera spica-venti, Alopecurus myosuroides and Lolium multiflorum. V. myuros emerged earlier than A. myosuroides and A. spica-venti but later than L. multiflorum. Significant differences in phenological development were recorded among the species. Overall phenology of V. myuros was more similar to that of L. multiflorum than to A. myosuroides and A. spica-venti. V. myuros started seed shedding earlier than A. spica-venti and L. multiflorum but later than A. myosuroides. V. myuros was more sensitive to winter wheat competition in terms of biomass production and fecundity than the other species. Using a target-neighborhood design, responses of V. myuros and A. spica-venti to the increasing density of winter wheat were quantified. At early growth stages “BBCH 26–29”, V. myuros was suppressed less than A. spica-venti by winter wheat, while opposite responses were seen at later growth stages “BBCH 39–47” and “BBCH 81–90”. No significant differences in fecundity characteristics were observed between the two species in response to increasing winter wheat density. The information on the behavior of V. myuros gathered by the current study can support the development of effective integrated weed management strategies for V. myuros.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1565
Author(s):  
María Belén D’Amico ◽  
Guillermo R. Chantre ◽  
Guillermo L. Calandrini ◽  
José L. González-Andújar

Population models are particularly helpful for understanding long-term changes in the weed dynamics associated with integrated weed management (IWM) strategies. IWM practices for controlling L. rigidum are of high importance, mainly due to its widespread resistance that precludes chemical control as a single management method. The objective of this contribution is to simulate different IWM scenarios with special emphasis on the impact of different levels of barley sowing densities on L. rigidum control. To this effect, a weed–crop population model for both L. rigidum and barley life cycles was developed. Our results point out: (i) the necessity of achieving high control efficiencies (>99%), (ii) that the increase of twice the standard sowing density of barley resulted in a reduction of 23.7% of the weed density, (iii) non-herbicide-based individual methods, such as delayed sowing and weed seed removal at harvest, proved to be inefficient for reducing drastically weed population, (iv) the implementation of at least three control tactics (seed removal, delay sowing and herbicides) is required for weed infestation eradication independently of the sowing rate, and (v) the effect of an increase in the sowing density is diluted as a more demanding weed control is reached. Future research should aim to disentangle the effect of different weed resistance levels on L. rigidum population dynamics and the required efficiencies for more sustainable IWM programs.


2021 ◽  
Vol 6 (1) ◽  
pp. 124-134
Author(s):  
Emmanuel Oyamedan Imoloame ◽  
Ibrahim Folorunsho Ayanda ◽  
Olayinka Jelili Yusuf

Abstract A survey was conducted in the Kwara State of Nigeria to study the integrated weed management (IWM) practices by farmers. This was in view of the poor weed management practices adopted by farmers, which is a major factor responsible for low yields of many arable crops in Kwara State. A multi-stage sampling technique was used to select a sample size of 480 respondents, and a structured interview schedule was used to elicit information from them. Data obtained were analyzed using descriptive statistics. Factor analysis was also carried out to examine the perception of farmers’ benefits of IWM. Results showed that the majority of farmers (29.4%) were youths, married (89.1%), and involved in medium-scale farming (47.2%). Furthermore, 50.8% of the farmers had primary or secondary education. Although farmers use different weed control methods, more than half of them (54.7%) use herbicides. Most farmers (92.6%) are engaged in the use of IWM, However, 73.5% of them use a combination of herbicides and hoe weeding. Although not properly practiced, farmers perceived IWM as having socio-environmental (29.229%) and techno-efficacious (23.495%) benefits over either hoe weeding or herbicides used alone. The findings suggest a need to train farmers on all aspects of IWM to achieve self-sufficiency in food production in Kwara State.


Sign in / Sign up

Export Citation Format

Share Document